Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Fiorani is active.

Publication


Featured researches published by Matteo Fiorani.


international conference on communications | 2014

Is backhaul becoming a bottleneck for green wireless access networks

Sibel Tombaz; Paolo Monti; Fabricio S. Farias; Matteo Fiorani; Lena Wosinska; Jens Zander

Mobile operators are facing an exponential traffic growth due to the proliferation of portable devices that require a high-capacity connectivity. This, in turn, leads to a tremendous increase of the energy consumption of wireless access networks. A promising solution to this problem is the concept of heterogeneous networks, which is based on the dense deployment of low-cost and low-power base stations, in addition to the traditional macro cells. However, in such a scenario the energy consumed by the backhaul, which aggregates the traffic from each base station towards the metro/core segment, becomes significant and may limit the advantages of heterogeneous network deployments. This paper aims at assessing the impact of backhaul on the energy consumption of wireless access networks, taking into consideration different data traffic requirements (i.e., from todays to 2020 traffic levels). Three backhaul architectures combining different technologies (i.e., copper, fiber, and microwave) are considered. Results show that backhaul can amount to up to 50% of the power consumption of a wireless access network. On the other hand, hybrid backhaul architectures that combines fiber and microwave performs relatively well in scenarios where the wireless network is characterized by a high small-base-stations penetration rate.


IEEE Communications Magazine | 2015

Optical interconnects at the top of the rack for energy-efficient data centers

Jiajia Chen; Yu Gong; Matteo Fiorani; Slavisa Aleksic

The growing popularity of cloud and multimedia services is dramatically increasing the traffic volume that each data center needs to handle. This is driving the demand for highly scalable, flexible, and energy-efficient networks inside data centers, in particular for the edge tier, which requires a large number of interconnects and consumes the dominant part of the overall power. Optical fiber communication is widely recognized as the highest energy- and cost-efficient technique to offer ultra-large capacity for telecommunication networks. It has also been considered as a promising transmission technology for future data center applications. Taking into account the characteristics of the traffic generated by the servers, such as locality, multicast, dynamicity, and burstiness, the emphasis of the research on data center networks has to be put on architectures that leverage optical transport to the greatest possible extent. However, no feasible solution based on optical switching is available so far for handling the data center traffic at the edge tier. Therefore, apart from conventional optical switching, we investigate a completely different paradigm, passive optical interconnects, and aim to explore the possibility for optical interconnects at the top of the rack. In this article, we present three major types of passive optical interconnects and carry out a performance assessment with respect to the ability to host data center traffic, scalability, optical power budget, complexity of the required interface, cost, and energy consumption. Our results have verified that the investigated passive optical interconnects can achieve a significant reduction of power consumption and maintain cost at a similar level compared to its electronic counterpart. Furthermore, several research directions on passive optical interconnects have been pointed out for future green data centers.


IEEE Communications Letters | 2014

Energy-Efficient Elastic Optical Interconnect Architecture for Data Centers

Matteo Fiorani; Slavisa Aleksic; Maurizio Casoni; Lena Wosinska; Jiajia Chen

To address the urgent need for high-capacity, scalable and energy-efficient data center solutions, we propose a novel data center network architecture realized by combining broadcast-and-select approach with elastic channel spacing technology. We demonstrate that the proposed architecture is able to scale efficiently with the number of servers and offers lower energy consumption at a competitive cost compared to the existing solutions.


IEEE\/OSA Journal of Optical Communications and Networking | 2011

Performance and Power Consumption Analysis of a Hybrid Optical Core Node

Matteo Fiorani; Maurizio Casoni; Slavisa Aleksic

Hybrid optical switching (HOS) is a switching paradigm that aims to combine optical circuit switching, optical burst switching, and optical packet switching on the same network. This paper proposes a novel integrated control plane for an HOS core node. The control plane makes use of a unified control packet able to carry the control information for all the different data formats and employs an appropriate scheduling algorithm for each incoming data type. Three possible node architectures are presented and an analytical model is introduced to analyze their power consumption. Also, the concept of increase in power efficiency is introduced to compare the considered architectures. The performance and power consumption analysis of the node have been carried out through the use of a simulation model developed specifically for the scope. The obtained results show the effectiveness of HOS networks.


Photonic Network Communications | 2015

On the design of 5G transport networks

Matteo Fiorani; Björn Skubic; Jonas Mårtensson; Luca Valcarenghi; Piero Castoldi; Lena Wosinska; Paolo Monti

Future 5G systems will pave the way to a completely new societal paradigm where access to information will be available anywhere, anytime, and to anyone or anything. Most of the ongoing research and debate around 5G systems are focusing on the radio network segment (e.g., how to offer high peak-rates per subscriber, and how to handle a very large number of simultaneously connected devices without compromising on coverage, outage probability, and latency). On the other hand, understanding the impact that 5G systems will have on the transport network (i.e., the segment in charge of the backhaul of radio base stations and/or the fronthaul of remote radio units) is also very important. This paper provides an analysis of the key architectural challenges for the design of a flexible 5G transport infrastructure able to adapt in a cost-efficient way to the plethora of requirements coming from the large number of envisioned future 5G services.


Journal of Lightwave Technology | 2016

Data Plane and Control Architectures for 5G Transport Networks

Peter Öhlén; Björn Skubic; Ahmad Rostami; Matteo Fiorani; Paolo Monti; Zere Ghebretensaé; Jonas Mårtensson; Kun Wang; Lena Wosinska

Next generation 5G mobile system will support the vision of connecting all devices that benefit from a connection, and support a wide range of services. Consequently, 5G transport networks need to provide the required capacity, latency, and flexibility in order to integrate the different technology domains of radio, transport, and cloud. This paper outlines the main challenges, which the 5G transport networks are facing and discusses in more detail data plane, control architectures, and the tradeoff between different network abstraction models.


Journal of Electrical and Computer Engineering | 2014

Hybrid optical switching for data center networks

Matteo Fiorani; Slavisa Aleksic; Maurizio Casoni

Current data centers networks rely on electronic switching and point-to-point interconnects. When considering future data center requirements, these solutions will raise issues in terms of flexibility, scalability, performance, and energy consumption. For this reason several optical switched interconnects, which make use of optical switches and wavelength division multiplexing (WDM), have been recently proposed. However, the solutions proposed so far suffer from low flexibility and are not able to provide service differentiation. In this paper we introduce a novel data center network based on hybrid optical switching (HOS). HOS combines optical circuit, burst, and packet switching on the same network. In this way different data center applications can be mapped to the optical transport mechanism that best suits their traffic characteristics. Furthermore, the proposed HOS network achieves high transmission efficiency and reduced energy consumption by using two parallel optical switches. We consider the architectures of both a traditional data center network and the proposed HOS network and present a combined analytical and simulation approach for their performance and energy consumption evaluation. We demonstrate that the proposed HOS data center network achieves high performance and flexibility while considerably reducing the energy consumption of current solutions.


IEEE\/OSA Journal of Optical Communications and Networking | 2013

Hybrid optical switching for energy-efficiency and QoS differentiation in core networks

Matteo Fiorani; Maurizio Casoni; Slavisa Aleksic

In the future, the Internet may ultimately be constrained by energy consumption and the capability to provide quality of service (QoS). As regards the Internet core, hybrid optical switching (HOS) is promising to provide service differentiation and reduced energy consumption in respect to current electronic switching solutions. In this paper we present a novel hybrid HOS network architecture that efficiently integrates the optical packet, burst, and circuit switching on the same network. The proposed HOS network envisages the use of two parallel switches, a slow optical switch for the transmission of circuits and long bursts, and a fast switch for the transmission of packets and short bursts. The most appropriate switching method is selected for the traffic generated by different applications and the less power consuming elements are utilized for transmission, ensuring flexibility, QoS differentiation, and low energy consumption. The HOS network is organized in an overlay model with the HOS control layer performing routing, signaling, and link management, and with the HOS forwarding layer managing the reservation of resources and data scheduling. Performance and energy efficiencyof the analyzed network are assessedby means of a combined analytical and simulation approach.


IEEE\/OSA Journal of Optical Communications and Networking | 2014

Energy efficiency of an integrated intra-data-center and core network with edge caching

Matteo Fiorani; Slavisa Aleksic; Paolo Monti; Jiajia Chen; Maurizio Casoni; Lena Wosinska

The expected growth of traffic demand may lead to a dramatic increase in the network energy consumption, which needs to be handled in order to guarantee scalability and sustainability of the infrastructure. There are many efforts to improve energy efficiency in communication networks, ranging from the component technology to the architectural and service-level approaches. Because data centers and content delivery networks are responsible for the majority of the energy consumption in the information and communication technology sector, in this paper we address network energy efficiency at the architectural and service levels and propose a unified network architecture that provides both intra-data-center and inter-data-center connectivity together with interconnection toward legacy IP networks. The architecture is well suited for the carrier cloud model, where both data-center and telecom infrastructure are owned and operated by the same entity. It is based on the hybrid optical switching (HOS) concept for achieving high network performance and energy efficiency. Therefore, we refer to it as an integrated HOS network. The main advantage of the integration of core and intra-data-center networks comes from the possibility to avoid the energy-inefficient electronic interfaces between data centers and telecom networks. Our results have verified that the integrated HOS network introduces a higher number of benefits in terms of energy efficiency and network delays compared to the conventional nonintegrated solution. At the service level, recent studies demonstrated that the use of distributed video cache servers can be beneficial in reducing energy consumption of intra-data-center and core networks. However, these studies only take into consideration conventional network solutions based on IP electronic switching, which are characterized by relatively high energy consumption. When a more energy-efficient switching technology, such as HOS, is employed, the advantage of using distributed video cache servers becomes less obvious. In this paper we evaluate the impact of video servers employed at the edge nodes of the integrated HOS network to understand whether edge caching could have any benefit for carrier cloud operators utilizing a HOS network architecture. We have demonstrated that if the distributed video cache servers are not properly dimensioned they may have a negative impact on the benefit obtained by the integrated HOS network.


IEEE Communications Letters | 2015

Transport Abstraction Models for an SDN-Controlled Centralized RAN

Matteo Fiorani; Ahmad Rostami; Lena Wosinska; Paolo Monti

In a centralized radio access network (C-RAN) scenario the joint coordination of radio (e.g., remote radio units, baseband units) and transport (e.g., optical cross connects) resources can be achieved via software defined networking (SDN) control plane, where a global orchestrator harmonizes the use of resources across all network segments. The more accurate the information about each domain (i.e., the abstraction of wireless and transport resources) is, the better will be the outcome of the orchestration work. This letter presents three transport resources abstraction models along with their corresponding orchestration policies. Their performance are compared showing that there is not a single best abstraction strategy that fits all the cases. If radio resources are scarce compared to transport resources, complex transport abstraction models are not needed. Contrariwise, if enough radio resources are widely available, more detailed abstraction models are required for achieving good network performance, but at the expense of an increased implementation complexity.

Collaboration


Dive into the Matteo Fiorani's collaboration.

Top Co-Authors

Avatar

Lena Wosinska

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paolo Monti

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maurizio Casoni

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Jiajia Chen

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Slavisa Aleksic

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge