Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Galli is active.

Publication


Featured researches published by Matteo Galli.


Nature Nanotechnology | 2014

Silicon nanostructures for photonics and photovoltaics

Francesco Priolo; T. Gregorkiewicz; Matteo Galli; Thomas F. Krauss

Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.


Nature Nanotechnology | 2010

Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons

Francesco De Angelis; Gobind Das; Patrizio Candeloro; M. Patrini; Matteo Galli; Alpan Bek; Marco Lazzarino; Ivan Maksymov; Carlo Liberale; Lucio Claudio Andreani; Enzo Di Fabrizio

The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.


Nano Letters | 2008

A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules.

Francesco De Angelis; M. Patrini; Gobind Das; Ivan Maksymov; Matteo Galli; Luca Businaro; Lucio Claudio Andreani; Enzo Di Fabrizio

Noble metal nanowaveguides supporting plasmon polariton modes are able to localize the optical fields at nanometer level for high sensitivity biochemical sensing devices. Here we report on the design and fabrication of a novel photonic-plasmonic device which demonstrates label-free detection capabilities on single inorganic nanoparticles and on monolayers of organic compounds. In any case, we determine the Raman scattering signal enhancement and the device detection limits that reach a number of molecules between 10 and 250. The device can be straightforwardly integrated in a scanning probe apparatus with the possibility to match topographic and label-free spectroscopic information in a wide range of geometries.


Applied Physics Letters | 2009

Light scattering and Fano resonances in high-Q photonic crystal nanocavities

Matteo Galli; Simone L. Portalupi; M. Belotti; Lucio Claudio Andreani; Liam O’Faolain; Thomas F. Krauss

The authors show that light scattering from high-Q planar photonic crystal nanocavities can display Fano-like resonances corresponding to the excitation of localized cavity modes. By changing the scattering conditions, we are able to tune the observed lineshapes from strongly asymmetric and dispersivelike resonances to symmetric Lorentzians. Results are interpreted according to the Fano model of quantum interference between two coupled scattering channels. Combined measurements and line shape analysis on a series of silicon L3 nanocavities as a function of nearby hole displacement demonstrate that Q factors as high as 1.1×105 can be directly measured in these structures. Furthermore, a comparison with theoretically calculated Q factors allows to extract the rms deviation of hole radii due to weak disorder of the photonic lattice.


Journal of Colloid and Interface Science | 2010

Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag + release for an efficient antibacterial activity

Piersandro Pallavicini; Angelo Taglietti; Giacomo Dacarro; Yuri Antonio Diaz-Fernandez; Matteo Galli; Pietro Grisoli; M. Patrini; Giorgio Santucci De Magistris; Robertino Zanoni

A two-step, easy synthetic strategy in solution has been optimized to prepare authentic monolayers of silver nanoparticles (NP) on MPTS-modified glass surfaces, that were investigated by AFM imaging and by quantitative silver determination techniques. NP in the monolayers remain firmly grafted (i.e. not released) when the surfaces are exposed to air, water or in the physiological conditions mimicked by phosphate saline buffer, as UV-Vis spectroscopy and AFM studies demonstrate. About 15% silver release as Ag(+) ions has been found after 15days when the surfaces are exposed to water. The released silver cations are responsible of an efficient local microbicidal activity against Escherichia coli and Staphylococcus aureus bacterial strains.


Optics Express | 2010

Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor

Simone L. Portalupi; Matteo Galli; Christopher Reardon; Thomas F. Krauss; Liam O'Faolain; Lucio Claudio Andreani; Dario Gerace

Different types of planar photonic crystal cavities aimed at optimizing the far-field emission pattern are designed and experimentally assessed by resonant scattering measurements. We systematically investigate the interplay between achieving the highest possible quality (Q) factor and maximizing the in- and out-coupling efficiency into a narrow emission cone. Cavities operate at telecommunications wavelengths, i.e. around approximately 1.55 microm, and are realized in silicon membranes. A strong modification of the far-field emission pattern, and therefore a substantial increase of the coupling efficiency in the vertical direction, is obtained by properly modifying the holes around L3, L5 and L7 type PhC cavities, as we predict theoretically and show experimentally. An optimal compromise yielding simultaneously a high Q-factor and a large coupling to the fundamental cavity mode is found for a L7-type cavity with a measured Q congruent with 62000, whose resonant scattering efficiency is improved by about two orders of magnitude with respect to the unmodified structure. These results are especially useful for prospective applications in light emitting devices, such as nano-lasers or single-photon sources, in which vertical in- and out-coupling of the electromagnetic field is necessarily required.


Optics Express | 2012

Ultra-low power generation of twin photons in a compact silicon ring resonator

Stefano Azzini; Davide Grassani; Michael J. Strain; Marc Sorel; Lukas G. Helt; J. E. Sipe; Marco Liscidini; Matteo Galli; Daniele Bajoni

We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.


Optica Applicata | 2015

Micrometer-scale integrated silicon source of time-energy entangled photons

Davide Grassani; Stefano Azzini; Marco Liscidini; Matteo Galli; Michael J. Strain; Marc Sorel; J. E. Sipe; Daniele Bajoni

Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip, but the devices demonstrated so far require millimeter lengths and pump powers of the order of hundreds of milliwatts to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices. Here we report the first demonstration, to the best of our knowledge, of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell’s inequality by more than seven standard deviations with an internal pair generation exceeding 107  Hz. The source is integrated on a silicon chip, operates at milliwatt and submilliwatt pump power, emits in the telecom band, and outputs into a photonic waveguide. These are all essential features of an entangled state emitter for a quantum photonic network.


Optics Express | 2010

Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities.

Matteo Galli; Dario Gerace; Karl Welna; Thomas F. Krauss; Liam O'Faolain; G. Guizzetti; Lucio Claudio Andreani

We present the first demonstration of frequency conversion by simultaneous second- and third-harmonic generation in a silicon photonic crystal nanocavity using continuous-wave optical excitation. We observe a bright dual wavelength emission in the blue/green (450-525 nm) and red (675-790 nm) visible windows with pump powers as low as few microwatts in the telecom bands, with conversion efficiencies of ∼ 10 (-5) /W and ∼ 10/ W(2) for the second- and third-harmonic, respectively. Scaling behaviors as a function of pump power and cavity quality-factor are demonstrated for both second- and third order processes. Successful comparison of measured and calculated emission patterns indicates that third-harmonic is a bulk effect while second-harmonic is a surface-related effect at the sidewall holes boundaries. Our results are promising for obtaining practical low-power, continuous-wave and widely tunable multiple harmonic generation on a silicon chip.


Physical Review B | 2005

Band structure and optical properties of opal photonic crystals

E. Pavarini; Lucio Claudio Andreani; Cesare Soci; Matteo Galli; F. Marabelli; Davide Comoretto

A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and 111 surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by 111 family planes leading to the formation of a stop band and diffraction in other directions by higher-order planes corresponding to the excitation of photonic modes in the crystal. Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

Collaboration


Dive into the Matteo Galli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge