Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Landriscina is active.

Publication


Featured researches published by Matteo Landriscina.


Antioxidants & Redox Signaling | 2009

Adaptation to Oxidative Stress, Chemoresistance, and Cell Survival

Matteo Landriscina; Francesca Maddalena; Gabriella Laudiero; Franca Esposito

The discovery of some additional properties and functions of reactive oxygen species (ROS), beyond their toxic effects, provides a novel scenario for the molecular basis and cell regulation of several pathophysiologic processes. ROS are generated by redox-sensitive, prosurvival signaling pathways and function as second messengers in the transduction of several extracellular signals. A complex intracellular redox buffering network has developed to adapt and protect cells against the dangerous effects of oxidative stress. However, pathways involved in ROS-adaptive response may also play a critical role in protecting cells against cytotoxic effects of anticancer agents, thus supporting the hypothesis of a correlation between adaptation/resistance to oxidative stress and resistance to anticancer drugs. This review summarizes the main systems involved in the adaptive responses: an overview on the pathophysiologic relevance of mitochondria on redox-sensitive transcription factors and genes and main antioxidant networks in tumor cells is provided. One of the major aims is to highlight the adaptive mechanisms and their interplay in the intricate connection between oncogenic signaling, oxidative stress, and chemoresistance. Clarification of these mechanisms has tremendous application potential, in terms of developing novel molecular-targeted anticancer therapies and innovative strategies for rational combination of these agents with chemotherapeutic or tumor-specific biologic drugs.


Oncogene | 2005

Inhibition of endogenous reverse transcriptase antagonizes human tumor growth.

Ilaria Sciamanna; Matteo Landriscina; Carmine Pittoggi; Michela Quirino; Cristina Mearelli; Rosanna Beraldi; Elisabetta Mattei; Annalucia Serafino; Alessandra Cassano; Paola Sinibaldi-Vallebona; Enrico Garaci; Carlo Barone; Corrado Spadafora

Undifferentiated cells and embryos express high levels of endogenous non-telomerase reverse transcriptase (RT) of retroposon/retroviral origin. We previously found that RT inhibitors modulate cell growth and differentiation in several cell lines. We have now sought to establish whether high levels of RT activity are directly linked to cell transformation. To address this possibility, we have employed two different approaches to inhibit RT activity in melanoma and prostate carcinoma cell lines: pharmacological inhibition by two characterized RT inhibitors, nevirapine and efavirenz, and downregulation of expression of RT-encoding LINE-1 elements by RNA interference (RNAi). Both treatments reduced proliferation, induced morphological differentiation and reprogrammed gene expression. These features are reversible upon discontinuation of the anti-RT treatment, suggesting that RT contributes to an epigenetic level of control. Most importantly, inhibition of RT activity in vivo antagonized tumor growth in animal experiments. Moreover, pretreatment with RT inhibitors attenuated the tumorigenic phenotype of prostate carcinoma cells inoculated in nude mice. Based on these data, the endogenous RT can be regarded as an epigenetic regulator of cell differentiation and proliferation and may represent a novel target in cancer therapy.


Stress | 2007

Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis.

N. Montesano Gesualdi; Giuseppa Chirico; G. Pirozzi; Eleonora Costantino; Matteo Landriscina; Franca Esposito

TRAP-1 is a mitochondrial heat shock protein (HSP), recently identified in Saos-2 osteosarcoma cells adapted to mild oxidative stress induced by diethylmaleate (DEM). TRAP-1 mRNA expression is increased in DEM-adapted cells as well as in tumor cells resistant to 5-fluorouracil and to platin derivatives. Since a strong decrease of TRAP-1 protein levels, upon cisplatin treatment, is observed only in controls but not in the DEM-adapted counterpart, a possible role for this protein in the development of resistant phenotypes could be hypothesized. To characterize the protective role of TRAP-1 against oxidative stress and apoptosis, stable transfectants were generated and characterized for their response to different stress types. These stable clones expressing constitutively high TRAP-1 levels: (i) are more resistant to H2O2-induced DNA damage and to apoptosis by cisplatin; (ii) contain higher reduced glutathione (GSH) levels than control cells; and (iii) do not release the apoptosis-inducing factor into the nucleus upon cisplatin treatment. Furthermore, high TRAP-1 levels interfere with caspase 3 activation. These results confirm the anti-apoptotic role of TRAP-1, and suggest that increased expression of this mitochondrial HSP in DEM-adapted and chemoresistant cells could be part of a pro-survival signaling pathway aimed to evade toxic effects of oxidants and anticancer drugs.


Journal of Cellular Biochemistry | 2008

Secretion without Golgi

Igor Prudovsky; Francesca Tarantini; Matteo Landriscina; David J. Neivandt; Raffaella Soldi; Aleksandr Kirov; Deena Small; Karuppanan Muthusamy Kathir; Dakshinamurthy Rajalingam; Thallapuranam Krishnaswamy Suresh Kumar

A growing number of proteins devoid of signal peptides have been demonstrated to be released through the non‐classical pathways independent of endoplasmic reticulum and Golgi. Among them are two potent proangiogenic cytokines FGF1 and IL1α. Stress‐induced transmembrane translocation of these proteins requires the assembly of copper‐dependent multiprotein release complexes. It involves the interaction of exported proteins with the acidic phospholipids of the inner leaflet of the cell membrane and membrane destabilization. Not only stress, but also thrombin treatment and inhibition of Notch signaling stimulate the export of FGF1. Non‐classical release of FGF1 and IL1α presents a promising target for treatment of cardiovascular, oncologic, and inflammatory disorders. J. Cell. Biochem. 103: 1327–1343, 2008.


Cancer Letters | 2009

TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells

Eleonora Costantino; Francesca Maddalena; Serena Calise; Annamaria Piscazzi; Virginia Tirino; Alberto Fersini; Antonio Ambrosi; Vincenzo Neri; Franca Esposito; Matteo Landriscina

TRAP1 is a component of a pro-survival mitochondrial pathway up-regulated in tumor cells. The evaluation of TRAP1 expression in 26 human colorectal carcinomas showed up-regulation in 17/26 tumors. Accordingly, TRAP1 levels were increased in HT-29 colorectal carcinoma cells resistant to 5-fluorouracil, oxaliplatin and irinotecan. Thus, we investigated the role of TRAP1 in multi-drug resistance in human colorectal cancer. Interestingly, TRAP1 overexpression leads to 5-fluorouracil-, oxaliplatin- and irinotecan-resistant phenotypes in different neoplastic cells. Conversely, the inhibition of TRAP1 activity by TRAP1 ATPase antagonist, shepherdin, increased the sensitivity to oxaliplatin and irinotecan in colorectal carcinoma cells resistant to the single agents. These results suggest that the increased expression of TRAP1 could be part of a pro-survival pathway responsible for multi-drug resistance.


Oncogene | 2003

Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation

Rosamaria Mangiacasale; Carmine Pittoggi; Ilaria Sciamanna; Angela Careddu; Elisabetta Mattei; Rodolfo Lorenzini; Lorena Travaglini; Matteo Landriscina; Carlo Barone; Clara Nervi; Patrizia Lavia; Corrado Spadafora

Endogenous, nontelomeric reverse transcriptase (RT) is encoded by two classes of repeated elements: retrotransposons and endogenous retroviruses. Expression of RT-coding genes is generally repressed in differentiated nonpathological tissues, yet is active in the mammalian germ line, embryonic tissues and tumor cells. Nevirapine is a non-nucleoside RT inhibitor with a well-characterized inhibitory activity on RT enzymes of retroviral origin. Here, we show that nevirapine is also an effective inhibitor of the endogenous RT in murine and human cell lines. In addition, progenitor and transformed cells undergo a significant reduction in the rate of cell growth upon exposure to nevirapine. This is accompanied by the onset of differentiation, as depicted in F9 and C2C7 progenitor cells cultures in which nevirapine triggers the expression of differentiation-specific markers. Consistent with this, an extensive reprogramming of cell cycle gene expression was depicted in nevirapine-treated F9 cultures. Furthermore, nevirapine exposure rescued the differentiation block present in acute myeloid leukemia (AML) cell lines and primary blasts from two AML patients, as indicated by morphological, functional and immunophenotypic assays. The finding that an RT inhibitor can modulate cell proliferation and differentiation suggests that RT may represent a novel target in the development of therapeutical approaches to neoplasia.


Cancer Research | 2010

Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents.

Matteo Landriscina; Gabriella Laudiero; Francesca Maddalena; Maria Rosaria Amoroso; Annamaria Piscazzi; Flora Cozzolino; Maria Chiara Monti; Corrado Garbi; Alberto Fersini; Piero Pucci; Franca Esposito

TRAP1, a mitochondrial chaperone (Hsp75) with antioxidant and antiapoptotic functions, is involved in multidrug resistance in human colorectal carcinoma cells. Through a proteomic analysis of TRAP1 coimmunoprecipitation complexes, the Ca(2+)-binding protein Sorcin was identified as a new TRAP1 interactor. This result prompted us to investigate the presence and role of Sorcin in mitochondria from human colon carcinoma cells. Using fluorescence microscopy and Western blot analysis of purified mitochondria and submitochondrial fractions, we showed the mitochondrial localization of an isoform of Sorcin with an electrophoretic motility lower than 20 kDa that specifically interacts with TRAP1. Furthermore, the effects of overexpressing or downregulating Sorcin and/or TRAP1 allowed us to demonstrate a reciprocal regulation between these two proteins and to show that their interaction is required for Sorcin mitochondrial localization and TRAP1 stability. Indeed, the depletion of TRAP1 by short hairpin RNA in colorectal carcinoma cells lowered Sorcin levels in mitochondria, whereas the depletion of Sorcin by small interfering RNA increased TRAP1 degradation. We also report several lines of evidence suggesting that intramitochondrial Sorcin plays a role in TRAP1 cytoprotection. Finally, preliminary evidence that TRAP1 and Sorcin are both implicated in multidrug resistance and are coupregulated in human colorectal carcinomas is provided. These novel findings highlight a new role for Sorcin, suggesting that some of its previously reported cytoprotective functions may be explained by involvement in mitochondrial metabolism through the TRAP1 pathway.


Gynecologic Oncology | 2010

Heat shock proteins, cell survival and drug resistance: The mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy

Matteo Landriscina; Maria Rosaria Amoroso; Annamaria Piscazzi; Franca Esposito

BACKGROUND Protein homeostasis is a highly complex network of molecular interactions governing the health and life span of the organism. Molecular chaperones, mainly heat shock proteins (HSP) and other stress-inducible proteins abundantly expressed in multiple compartments of the cell, are major modulators of protein homeostasis. TRAP1 is a mitochondrial HSP involved in protection against oxidant-induced DNA damage and apoptosis. It was recently described as a component of a mitochondrial pathway selectively up-regulated in tumor cells which antagonizes the proapoptotic activity of cyclophilin D, a mitochondrial permeability transition pore regulator, and is responsible for the maintenance of mitochondrial integrity, thus favoring cell survival. Interestingly, novel TRAP1 antagonists cause sudden collapse of mitochondrial function and selective tumor cell death, suggesting that this pathway may represent a novel molecular target to improve anticancer therapy. Preliminary data suggest that TRAP1 may be a valuable biomarker in ovarian cancers: in fact, TRAP1 levels are significantly higher in cisplatin-resistant ovarian tumors and ovarian carcinoma cell lines. CONCLUSIONS While major advances have been made in understanding the genetics and molecular biology of cancer, given the considerable heterogeneity of ovarian cancer, the introduction of novel targeted therapies and the consequent selection of treatments based on the molecular profile of each tumor may have a major impact on the management of this malignancy and might contribute to building a new era of personalized medicine.


Cell Death & Differentiation | 2012

TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins

Maria Rosaria Amoroso; Danilo Swann Matassa; Gabriella Laudiero; A V Egorova; R S Polishchuk; Francesca Maddalena; Annamaria Piscazzi; S Paladino; Daniela Sarnataro; Corrado Garbi; Matteo Landriscina; Franca Esposito

Tumor necrosis factor receptor-associated protein-1 (TRAP1) is a mitochondrial (MITO) antiapoptotic heat-shock protein. The information available on the TRAP1 pathway describes just a few well-characterized functions of this protein in mitochondria. However, our groups use of mass-spectrometric analysis identified TBP7, an AAA-ATPase of the 19S proteasomal subunit, as a putative TRAP1-interacting protein. Surprisingly, TRAP1 and TBP7 colocalize in the endoplasmic reticulum (ER), as demonstrated by biochemical and confocal/electron microscopic analyses, and interact directly, as confirmed by fluorescence resonance energy transfer analysis. This is the first demonstration of TRAP1s presence in this cellular compartment. TRAP1 silencing by short-hairpin RNAs, in cells exposed to thapsigargin-induced ER stress, correlates with upregulation of BiP/Grp78, thus suggesting a role of TRAP1 in the refolding of damaged proteins and in ER stress protection. Consistently, TRAP1 and/or TBP7 interference enhanced stress-induced cell death and increased intracellular protein ubiquitination. These experiments led us to hypothesize an involvement of TRAP1 in protein quality control for mistargeted/misfolded mitochondria-destined proteins, through interaction with the regulatory proteasome protein TBP7. Remarkably, expression of specific MITO proteins decreased upon TRAP1 interference as a consequence of increased ubiquitination. The proposed TRAP1 network has an impact in vivo, as it is conserved in human colorectal cancers, is controlled by ER-localized TRAP1 interacting with TBP7 and provides a novel model of the ER–mitochondria crosstalk.


Cancer Research | 2011

Sorcin Induces a Drug-Resistant Phenotype in Human Colorectal Cancer by Modulating Ca2+ Homeostasis

Francesca Maddalena; Gabriella Laudiero; Annamaria Piscazzi; Agnese Secondo; Antonella Scorziello; Valentina Lombardi; Danilo Swann Matassa; Alberto Fersini; Vincenzo Neri; Franca Esposito; Matteo Landriscina

The Ca(2+)-binding protein sorcin regulates intracellular calcium homeostasis and plays a role in the induction of drug resistance in human cancers. Recently, an 18 kDa mitochondrial isoform of sorcin was reported to participate in antiapoptosis in human colorectal cancer (CRC), but information remains lacking about the functional role of the more abundant 22 kDa isoform of sorcin expressed in CRC. We found the 22 kDa isoform to be widely expressed in human CRC cells, whether or not they were drug resistant. Its upregulation in drug-sensitive cells induced resistance to 5-fluorouracil, oxaliplatin, and irinotecan, whereas its downregulation sensitized CRC cells to these chemotherapeutic agents. Sorcin enhances the accumulation of Ca(2+) in the endoplasmic reticulum (ER), preventing ER stress, and, in support of this function, we found that the 22 kDa isoform of sorcin was upregulated under conditions of ER stress. In contrast, RNAi-mediated silencing of sorcin activated caspase-3, caspase-12, and GRP78/BiP, triggering apoptosis through the mitochondrial pathway. Our findings establish that CRC cells overexpress sorcin as an adaptive mechanism to prevent ER stress and escape apoptosis triggered by chemotherapeutic agents, prompting its further investigation as a novel molecular target to overcome MDR.

Collaboration


Dive into the Matteo Landriscina's collaboration.

Top Co-Authors

Avatar

Franca Esposito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Swann Matassa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Rosaria Amoroso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carlo Barone

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Cassano

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilenia Agliarulo

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge