Matteo Mantovani
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Mantovani.
Landslides | 2013
Matteo Mantovani; Stefano Devoto; Emanuele Forte; Arianna Mocnik; Alessandro Pasuto; Daniela Piacentini; Mauro Soldati
Landslides are widespread along the north-western coast of the Island of Malta and are strictly linked to the structural setting. Exemplary cases of rock spreading and block sliding phenomena characterise this stretch of coast. They are favoured by the overposition of two different geological units widely outcropping there, the Blue Clay Formation and the Upper Coralline Limestone Formation. The latter forms a wide plateau, bordered by vertical cliffs. At the foot of the cliffs, clayey terrains crop out and develop gentle slopes covered by large blocks detached and moved by rock spreading and block sliding phenomena. These mass movements are favoured by the fragile behaviour of limestones, which cap clays, otherwise characterised by visco-plastic properties. In order to investigate the kinematics and the evolution of these types of coastal landslides, a multidisciplinary and multitechnical approach was applied on a study site, named Il-Prajjet, which provides a spectacular case of rock spreading evolving into block sliding. This paper illustrates the results achieved by means of different engineering geological and geophysical techniques allied with traditional detailed geomorphological survey and mapping. In particular, the surface displacements of the landslides were determined using long-term GPS observations, acquired approximately every 6 months, over a 4.5-year period. A network of GPS benchmarks were distributed on the edge of a limestone plateau affected by rock spreading and on a series of displaced blocks making up a large block slide, finally enabling the definition of the state of activity and the rates of movement to be performed. In addition, the results deriving from two continuous fissurimeters more recently installed at the edge of two persistent joints over the block sliding area are outlined, with reference to the correlation between variations of crack apertures and precipitation input. In order to identify main structural discontinuities and to reconstruct variability of underground surface contact between clays and overlying limestones, Resistivity Tomography profiles and GPR investigations were carried out. Finally, the results obtained by combining the outputs of geophysical surveys and different field monitoring activities can be considered a first step on which numerical models can be developed and validated, in order to assess landslide hazard and risk of this stretch of Maltese coastline.
Journal of Maps | 2012
Stefano Devoto; Sara Biolchi; Viola Maria Bruschi; Stefano Furlani; Matteo Mantovani; Daniela Piacentini; Alessandro Pasuto; Mauro Soldati
This paper presents the results of geomorphological investigations carried along the north-western coast of the Island of Malta. Field surveys, accompanied by aerial photo-interpretation, have led to the production of a geomorphological map at 1:7500 scale which outlines the main processes and related landforms. The latter are the result of the complex interplay of structural, gravitational, coastal and karst processes. Particular attention was devoted to the recognition, identification and mapping of landslides which affect large coastal sectors of the study area, locally giving rise to hazardous conditions.
Computers & Geosciences | 2014
Simone Frigerio; Luca Schenato; Giulia Bossi; Marco Cavalli; Matteo Mantovani; Gianluca Marcato; Alessandro Pasuto
In the Small Dolomites group (Eastern Italian Alps), the Rotolon catchment is affected by a landslide that historically threatened the nearby village of Recoaro Terme. After the last re-activation on November 2010, the need to deploy devices to monitor deformations on the unstable slope became of paramount importance. This paper deals with the methodology, the techniques and the integrated services adopted for the design and the realization of a web-based platform for automatic and continuous monitoring of the Rotolon landslide. The choice of a web environment simplifies data collection, while a remote control permits technical maintenance and calibration on instruments and sensors in the field. Data management is straightforward on a single server, with the dataset being continuously updated. There is a user-friendly web interface which allows a practical up-to-date solution for decision-makers. This web-based monitoring platform represents the first step in the implementation of a complete early warning system. We design a multi-source and web-based platform for automatic and continuous monitoring.A user-friendly web interface allows a practical up-to-date solution for decision-makers.A better knowledge of the processes improves the quality of research.The framework is open and supported for custom requests.
Natural Hazards | 2015
Daniela Piacentini; Stefano Devoto; Matteo Mantovani; Alessandro Pasuto; Mariacristina Prampolini; Mauro Soldati
Abstract Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer from physical and technological constraints that restrict their field of application. These limitations prevent us from collecting information from several critical areas within the investigated region. In this paper, we present a novel approach that exploits the results of PSI analysis for the implementation of a statistical model for landslide susceptibility. The attempt is to identify active mass movements by means of PSI and to avoid, as input data, time-/cost-consuming and seldom updated landslide inventories. The study has been performed along the northwestern coast of Malta (central Mediterranean Sea), where the peculiar geological and geomorphological settings favor the occurrence of a series of extensive slow-moving landslides. Most of these consist in rock spreads, evolving into block slides, with large limestone blocks characterized by scarce vegetation and proper inclination, which represent suitable natural radar reflectors for applying PSI. Based on geomorphometric analyses and geomorphological investigations, a series of landslide predisposing factors were selected and a susceptibility map created. The result was validated by means of cross-validation technique, field surveys and global navigation satellite system in situ monitoring activities. The final outcome shows a good reliability and could represent an adequate response to the increasing demand for effective and low-cost tools for landslide susceptibility assessment.
Archive | 2013
Stefano Devoto; Sara Biolchi; Viola Maria Bruschi; Alberto González Díez; Matteo Mantovani; Alessandro Pasuto; Daniela Piacentini; John A. Schembri; Mauro Soldati
The paper shows the results of geomorphological and engineering-geological investigations carried out along the north-western coast of the Island of Malta, with special emphasis on landslides. Field surveys and aerial-photo interpretation allowed the recognition, identification and mapping of a series of landslides of different type and size, some of which showing evidence of activity. Coastal instability in the studied area is deeply controlled by structural factors, such as tectonic and stratigraphic ones. The research envisaged a multidisciplinary approach, which also included landslide monitoring in specific sites which were selected for detailed investigations, owing to the peculiarity of the instability processes occurring and for the related hazard and risk conditions. The paper outlines the research phases and the results achieved which proved to be fruitful thanks to the application of different methodologies for the study of coastal landslides. Particular attention has been paid to rock spreading phenomena, which are widespread along the north-western coast of Malta due to the superimposition of limestones over clayey terrains.
Remote Sensing | 2016
Matteo Mantovani; Stefano Devoto; Daniela Piacentini; Mariacristina Prampolini; Mauro Soldati; Alessandro Pasuto
An advanced SAR interferometric analysis has been combined with a methodology for the automatic classification of radar reflectors phase histories to interpret slope-failure kinematics and trend of displacements of slow-moving landslides. To accomplish this goal, the large dataset of radar images, acquired in more than 20 years by the two European Space Agency (ESA) missions ERS-1/2 and ENVISAT, was exploited. The analysis was performed over the northern sector of Island of Malta (central Mediterranean Sea), where extensive landslides occur. The study was assisted by field surveys and with the analysis of existing thematic maps and landslide inventories. The outcomes allowed definition of a model capable of describing the geomorphological evolution of slow-moving landslides, providing a key for interpreting such phenomena that, due to their slowness, are usually scarcely investigated.
Archive | 2013
Stefano Devoto; Emanuele Forte; Matteo Mantovani; Arianna Mocnik; Alessandro Pasuto; Daniela Piacentini; Mauro Soldati
Landslides, and especially lateral spreading, are responsible for the main landforms observable along the north-western coast of the Island of Malta. A series of rock spreading phenomena, and associated mass movements, have been recognised in this area and the most significant cases have been investigated by means of a multi-technical approach which envisaged geomorphological survey and mapping, geophysical analyses and monitoring of displacements. The aim of the study was to define whether rock spreading phenomena are active along the investigated coastal stretch and, possibly, to determine the rate of movement of the most relevant cases. In this framework, a multidisciplinary approach was used and different techniques were tested and applied on a specific site, which was selected for the presence of an extensive rock spread phenomenon which may induce hazard conditions. The site is located at Il-Prajjet (Anchor Bay), a narrow inlet where a tourist attraction is located. Research activities have been carried out at Il-Prajjet since 2006 when a GPS network of eight benchmarks was installed. This technique was chosen because it proved to be a powerful tool in the study of similar ground deformation in coastal and mountain areas, showing high accuracy and reliability. Once GPS monitoring had showed that rock spreading was active, further techniques were applied in order to achieve an in-depth knowledge of the instability processes occurring at Il-Prajjet. The paper illustrates the results so far achieved thanks to GPS monitoring, tape extensometer measurements, SAR interferometric analyses and GPR investigations.
Journal of remote sensing | 2013
Matteo Mantovani; Hans-Georg Scherneck
Northern Fennoscandia bears witness to the Pleistocene glaciation in the form of a series of large faults that have been shown to have ruptured immediately after the retreat of the ice sheet, about 9500 years ago. The largest one, known as the Pärvie fault, consists of a 155 km long linear series of fault scarps forming north–northeast-trending, that stretch west of Kiruna, Lapland. End-glacial intra-plate faults of this extent are very rare in the continental crust and the Pärvie system represents one of the major fault zone structures of this type in the world. Seismological evidence shows that there is still noticeable seismic activity, roughly one event of magnitude 2 per year that can be attributed to the fault. Nevertheless assessing its state of activity is a difficult task due to the extent and remoteness of the area. This study is aimed at the determination of crustal motion around the Pärvie fault zone using the differential inter-ferometric synthetic aperture radar (DInSAR) technique, based on images acquired with the European Space Agency (ESA) satellites European Remote Sensing (ERS) 1, ERS-2, and the Environmental Satellite (ENVISAT). We present results achieved in terms of deformation of the crystalline bedrock along different sectors of the fault where high levels of coherence were obtained, even from image pairs several years apart. This finding does not exclude deformation in other segments, as observing conditions are not always as favourable in terms of data availability.
Archive | 2015
Giulia Bossi; Stefano Crema; Simone Frigerio; Matteo Mantovani; Gianluca Marcato; Alessandro Pasuto; Luca Schenato; Marco Cavalli
Severe instability processes have affected the Rotolon catchment (Eastern Italian Alps) for long time. The first written proof of a landslide occurrence dates back to 1798. The last re-activation occurred in November 2010 when, after a cumulative rainfall of 637 mm in 12 days, a mass of approximately 320,000 m3 detached from the unstable slope and evolved into a debris flow that ran for about 4 km along the channel, threatening the villages along the stream. Since then, the design and the implementation of an early-warning system was considered of primary importance, in order to mitigate the risk for the valley inhabitants. A monitoring network consisting of 42 topographic benchmarks and 6 wire extensometers was installed and a warning system was deployed along four sections of the channel. The latter consists of 3 pendulum sections and a trip-wire section. Alarm sirens installed near the settlements are activated when the warning system is triggered by a debris-flow event, guaranteeing some minutes lead time to the local population. In this way the inhabitants could evacuate in time and reach safe areas thus reducing the risk. A Decision Support System (DSS) is also integrated with the deployed sensors, therefore technicians may support crisis response with a user-friendly instrument.
Archive | 2015
Stefano Devoto; Matteo Mantovani; Alessandro Pasuto; Daniela Piacentini; Mauro Soldati
The aim of this paper is to show the results of 8 years of research activities carried on the north-western coast of the Island of Malta, with particular reference to the outputs of monitoring and interferometric analysis as a support for the implementation of a landslide inventory. The study area is characterized by the presence of limestones overlapping clayey terrains, thus favoring the presence of large rock spreading phenomena, which often evolve into block slides. Field surveys resulted in approximately 86 landslides, distributed between the coastline and structural cliffs which flank limestone plateaus. In order to support geomorphological investigations, a GPS (Global Position System) monitoring network was deployed over two coastal sites. Slow rates of surface deformations varying from few millimeters per year to some centimeters per year were recorded. Since the extension of the GPS network over the entire north-western coast and for such a high number of landslides is not feasible in terms of cost-benefit relations, we applied PSI (Persistent Scatterers Interferometry) to validate the geomorphological map. DinSAR data analysis confirmed the displacement rates measured by the GPS monitoring network and provided useful information about the style of activity of a large number of landslides affecting the north-western coastline of Malta. The outcomes supported the satisfactory capabilities of an integrated approach, which coupled conventional geomorphological procedures with monitoring techniques to bring out an exhaustive landslide inventory, even for slow or very slow mass movements, essential for related hazard assessment.