Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Morello is active.

Publication


Featured researches published by Matteo Morello.


Cancer Research | 2009

Oncosome Formation in Prostate Cancer: Association with a Region of Frequent Chromosomal Deletion in Metastatic Disease

Dolores Di Vizio; Jayoung Kim; Martin H. Hager; Matteo Morello; Wei Yang; Christopher J. Lafargue; Lawrence D. True; Mark A. Rubin; Rosalyn M. Adam; Rameen Beroukhim; Francesca Demichelis; Michael R. Freeman

Oncosomes have recently been described as membrane-derived microvesicles secreted by cancer cells, which transfer oncogenic signals and protein complexes across cell boundaries. Here, we show the rapid formation and secretion of oncosomes from DU145 and LNCaP human prostate cancer cells. Oncosome formation was stimulated by epidermal growth factor receptor activation and also by overexpression of membrane-targeted Akt1. Microvesicles shed from prostate cancer cells contained numerous signal transduction proteins and were capable of activating rapid phospho-tyrosine and Akt pathway signaling, and stimulating proliferation and migration, in recipient tumor cells. They also induced a stromal reaction in recipient normal cells. Knockdown of the actin nucleating protein Diaphanous Related Formin 3 (DRF3/Dia2) by RNA interference enhanced rates of oncosome formation, indicating that these structures resemble, and may be identical to, nonapoptotic membrane blebs, a feature of the amoeboid form of cell motility. Analysis of primary and metastatic human prostate tumors using 100K single nucleotide polymorphism arrays revealed a significantly higher frequency of deletion of the locus encoding DRF3 (DIAPH3) in metastatic tumors (P = 0.001) in comparison with organ-confined tumors. Fluorescence in situ hybridization confirmed increased chromosomal loss of DIAPH3 in metastatic tumors in a different cohort of patients (P = 0.006). These data suggest that microvesicles shed from prostate cancer cells can alter the tumor microenvironment in a manner that may promote disease progression. They also show that DRF3 is a physiologically relevant protein that seems to regulate this process.


American Journal of Pathology | 2012

Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic Disease

Dolores Di Vizio; Matteo Morello; Andrew C. Dudley; Peter Schow; Rosalyn M. Adam; Samantha Morley; David J. Mulholland; Mirja Rotinen; Martin H. Hager; Luigi Insabato; Marsha A. Moses; Francesca Demichelis; Michael P. Lisanti; Hong Wu; Michael Klagsbrun; Neil A. Bhowmick; Mark A. Rubin; Crislyn D'Souza-Schorey; Michael R. Freeman

Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-μm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 μm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.


Cell Cycle | 2009

An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation

Dolores Di Vizio; Matteo Morello; Federica Sotgia; Richard G. Pestell; Michael R. Freeman; Michael P. Lisanti

Here, we examined the status of stromal Cav-1 expression in patients with benign prostatic hypertrophy (BPH), primary prostate cancers (PCa), and prostate-cancer metastases (Mets). Interestingly, an absence of stromal Cav-1 directly correlated with prostate cancer disease progression. For example, virtually all BPH samples showed abundant stromal Cav-1 immunostaining. In contrast, in a subset of patients with primary prostate cancer, the stromal levels of Cav-1 were significantly decreased, and this correlated with a high Gleason score, indicative of a worse prognosis and poor clinical outcome. Remarkably, all metastatic tumors (either from lymph node or bone) were completely negative for stromal Cav-1 staining. Thus, stromal Cav-1 expression may be considered as a new biomarker of prostate cancer disease progression and metastasis. Mechanistically, stromal Cav-1 levels were inversely correlated with the epithelial expression levels of Cav-1 and epithelial phospho-Akt. Thus, loss of stromal Cav-1 is predictive of elevated levels of epithelial Cav-1 and epithelial Akt-activation. This provides important new clinical evidence for paracrine signaling between prostate cancer epithelial cells and the tumor stromal micro-environment, especially related to disease progression and metastasis.


Cell Cycle | 2013

Large oncosomes mediate intercellular transfer of functional microRNA.

Matteo Morello; Valentina R. Minciacchi; Paola De Candia; Julie Yang; Edwin M. Posadas; Hyung L. Kim; Duncan Griffiths; Neil A. Bhowmick; Leland W.K. Chung; Paolo Gandellini; Michael R. Freeman; Francesca Demichelis; Dolores Di Vizio

Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.


Journal of Cellular and Molecular Medicine | 2008

Seladin‐1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content

Cristina Cecchi; Fabiana Rosati; Anna Pensalfini; Lucia Formigli; Daniele Nosi; Gianfranco Liguri; Francesca Dichiara; Matteo Morello; Giovanna Danza; Giuseppe Pieraccini; Alessandro Peri; Mario Serio; Massimo Stefani

The role of brain cholesterol in Alzheimers disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode‐generation and that the cholesterol synthesis catalyst seladin‐1 is down‐regulated in AD‐affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Aβ42 pre‐fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH‐SY5Y neuroblastoma cells overexpressing seladin‐1 or treated with PEG‐cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol‐depleted cells following treatment with the specific seladin‐1 inhibitor 5,22E‐cholestadien‐3‐ol or with methyl‐β‐cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Aβ42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol‐depleted cells. These results suggest that seladin‐1‐dependent cholesterol synthesis reduces membrane‐aggregate interaction and cell damage associated to amyloid‐induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin‐1 overexpression directly enhances the resistance to Aβ toxicity featuring seladin‐1/DHCR 24 as a possible new susceptibility gene for sporadic AD.


The Journal of Pathology | 2013

Loss of caveolin‐1 in prostate cancer stroma correlates with reduced relapse‐free survival and is functionally relevant to tumour progression

Gustavo Ayala; Matteo Morello; Anna Frolov; Sungyong You; Rile Li; Fabiana Rosati; Gianluca Bartolucci; Giovanna Danza; Rosalyn M. Adam; Timothy C. Thompson; Michael P. Lisanti; Michael R. Freeman; Dolores Di Vizio

Levels of caveolin‐1 (Cav‐1) in tumour epithelial cells increase during prostate cancer progression. Conversely, Cav‐1 expression in the stroma can decline in advanced and metastatic prostate cancer. In a large cohort of 724 prostate cancers, we observed significantly decreased levels of stromal Cav‐1 in concordance with increased Gleason score (p = 0.012). Importantly, reduced expression of Cav‐1 in the stroma correlated with reduced relapse‐free survival (p = 0.009), suggesting a role for stromal Cav‐1 in inhibiting advanced disease. Silencing of Cav‐1 by shRNA in WPMY‐1 prostate fibroblasts resulted in up‐regulation of Akt phosphorylation, and significantly altered expression of genes involved in angiogenesis, invasion, and metastasis, including a > 2.5‐fold increase in TGF‐β1 and γ‐synuclein (SNCG) gene expression. Moreover, silencing of Cav‐1 induced migration of prostate cancer cells when stromal cells were used as attractants. Pharmacological inhibition of Akt caused down‐regulation of TGF‐β1 and SNCG, suggesting that loss of Cav‐1 in the stroma can influence Akt‐mediated signalling in the tumour microenvironment. Cav‐1‐depleted stromal cells exhibited increased levels of intracellular cholesterol, a precursor for androgen biosynthesis, steroidogenic enzymes, and testosterone. These findings suggest that loss of Cav‐1 in the tumour microenvironment contributes to the metastatic behaviour of tumour cells by a mechanism that involves up‐regulation of TGF‐β1 and SNCG through Akt activation. They also suggest that intracrine production of androgens, a process relevant to castration resistance, may occur in the stroma. Copyright


Endocrinology | 2008

Seladin-1 Is a Fundamental Mediator of the Neuroprotective Effects of Estrogen in Human Neuroblast Long-Term Cell Cultures

Paola Luciani; Cristiana Deledda; Fabiana Rosati; Susanna Benvenuti; Ilaria Cellai; Francesca Dichiara; Matteo Morello; Gabriella Barbara Vannelli; Giovanna Danza; Mario Serio; Alessandro Peri

Estrogen exerts neuroprotective effects and reduces beta-amyloid accumulation in models of Alzheimers disease (AD). A few years ago, a new neuroprotective gene, i.e. seladin-1 (for selective AD indicator-1), was identified and found to be down-regulated in AD vulnerable brain regions. Seladin-1 inhibits the activation of caspase-3, a key modulator of apoptosis. In addition, it has been demonstrated that the seladin-1 gene encodes 3beta-hydroxysterol Delta24-reductase, which catalyzes the synthesis of cholesterol from desmosterol. We have demonstrated previously that in fetal neuroepithelial cells, 17beta-estradiol (17betaE2), raloxifene, and tamoxifen exert neuroprotective effects and increase the expression of seladin-1. The aim of the present study was to elucidate whether seladin-1 is directly involved in estrogen-mediated neuroprotection. Using the small interfering RNA methodology, significantly reduced levels of seladin-1 mRNA and protein were obtained in fetal neuroepithelial cells. Seladin-1 silencing determined the loss of the protective effect of 17betaE2 against beta-amyloid and oxidative stress toxicity and caspase-3 activation. A computer-assisted analysis revealed the presence of half-palindromic estrogen responsive elements upstream from the coding region of the seladin-1 gene. A 1490-bp region was cloned in a luciferase reporter vector, which was transiently cotransfected with the estrogen receptor alpha in Chinese hamster ovarian cells. The exposure to 17betaE2, raloxifene, tamoxifen, and the soy isoflavones genistein and zearalenone increased luciferase activity, thus suggesting a functional role for the half-estrogen responsive elements of the seladin-1 gene. Our data provide for the first time a direct demonstration that seladin-1 may be considered a fundamental mediator of the neuroprotective effects of estrogen.


Embo Molecular Medicine | 2012

DIAPH3 governs the cellular transition to the amoeboid tumour phenotype

Martin H. Hager; Samantha Morley; Diane R. Bielenberg; Sizhen Gao; Matteo Morello; Ilona N. Holcomb; Wennuan Liu; Ghassan Mouneimne; Francesca Demichelis; Jayoung Kim; Keith R. Solomon; Rosalyn M. Adam; William B. Isaacs; Henry N. Higgs; Robert L. Vessella; Dolores Di Vizio; Michael R. Freeman

Therapies for most malignancies are generally ineffective once metastasis occurs. While tumour cells migrate through tissues using diverse strategies, the signalling networks controlling such behaviours in human tumours are poorly understood. Here we define a role for the Diaphanous‐related formin‐3 (DIAPH3) as a non‐canonical regulator of metastasis that restrains conversion to amoeboid cell behaviour in multiple cancer types. The DIAPH3 locus is close to RB1, within a narrow consensus region of deletion on chromosome 13q in prostate, breast and hepatocellular carcinomas. DIAPH3 silencing in human carcinoma cells destabilized microtubules and induced defective endocytic trafficking, endosomal accumulation of EGFR, and hyperactivation of EGFR/MEK/ERK signalling. Silencing also evoked amoeboid properties, increased invasion and promoted metastasis in mice. In human tumours, DIAPH3 down‐regulation was associated with aggressive or metastatic disease. DIAPH3‐silenced cells were sensitive to MEK inhibition, but showed reduced sensitivity to EGFR inhibition. These findings have implications for understanding mechanisms of metastasis, and suggest that identifying patients with chromosomal deletions at DIAPH3 may have prognostic value.


The Journal of Steroid Biochemistry and Molecular Biology | 2011

Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells.

Fabiana Rosati; Niccolò Sturli; Maria Chiara Cungi; Matteo Morello; Fabio Villanelli; Gianluca Bartolucci; Claudia Finocchi; Alessandro Peri; Mario Serio; Giovanna Danza

Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain.


Oncotarget | 2015

SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer

Murali Gururajan; Karen A. Cavassani; Margarit Sievert; Peng Duan; Jake Lichterman; Jen-Ming Huang; Bethany N. Smith; Sungyong You; Srinivas Nandana; Gina Chia-Yi Chu; Sheldon R. Mink; Sajni Josson; Chunyan Liu; Matteo Morello; Lawrence W. Jones; Jayoung Kim; Michael R. Freeman; Neil A. Bhowmick; Haiyen E. Zhau; Leland W.K. Chung; Edwin M. Posadas

FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC) tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.

Collaboration


Dive into the Matteo Morello's collaboration.

Top Co-Authors

Avatar

Michael R. Freeman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dolores Di Vizio

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rosalyn M. Adam

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil A. Bhowmick

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samantha Morley

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin M. Posadas

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sungyong You

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge