Matteo Pascenti
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Pascenti.
Journal of Fuel Cell Science and Technology | 2009
Mario L. Ferrari; Matteo Pascenti; Roberto Bertone; Loredana Magistri
A new high temperature fuel cell-micro gas turbine physical emulator has been designed and installed in the framework of the European Integrated Project “FELICITAS” at the Thermochemical Power Group (TPG) laboratory located at Savona. The test rig is based on a commercial 100 kWe recuperated micro gas turbine (mGT) (Turbec T100) modified to be connected to a modular volume designed for physical emulation of fuel cell stack influence. The test rig has been developed starting with a complete theoretical analysis of the micro gas turbine design and off-design performance and with the definition of the more flexible layout to be used for different hybrid system (molten carbonate fuel cell or solid oxide fuel cell) emulation. The layout of the system (connecting pipes, valves, and instrumentation, in particular mass flow meter locations) has been carefully designed, and is presented in detail in this paper. Particular attention has been focused on the viscous pressure loss minimization: (i) to reduce the unbalance between compressor and expander, (ii) to maintain a high measurement precision, and (iii) to have an effective plant flexibility. Moreover, the volume used to emulate the cell stack has been designed to be strongly modular (different from a similar system developed by U.S. Department Of Energy-National Energy Technology Laboratory) to allow different volume size influence on the mGT rig to be easily tested. The modular high temperature volume has been designed using a computational fluid dynamics (CFD) commercial tool (FLUENT ). The CFD analysis was used (i) to reach a high level of uniformity in the flow distribution inside the volume, (ii) to have a velocity field (m/s) similar to the one existing inside the emulated cell stack, and (iii) to minimize (as possible) the pressure losses. The volume insulation will also allow to consider a strong thermal capacity effect during the tests. This paper reports the experimental results of several tests carried out on the rig (using the mGT at electrical stand-alone conditions with the machine control system operating at constant rotational speed) at different load values and at both steady-state and transient conditions.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2010
Mario L. Ferrari; Matteo Pascenti; Loredana Magistri; Aristide F. Massardo
The aim of this work is the experimental analysis of a primary-surface recuperator, operating in a 100 kW micro gas turbine, as in a standard recuperated cycle. These tests, performed in both steady-state and transient conditions, have been carried out using the micro gas turbine test rig, developed by the Thermochemical Power Group at the University of Genova, Italy. Even if this facility has mainly been designed for hybrid system emulations, it is possible to exploit the plant for component tests, such as experimental studies on recuperators. The valves installed in the rig make it possible to operate the plant in the standard recuperated configuration, and the facility has been equipped with new probes essential for this kind of tests. A wide-ranging analysis of the recuperator performance has been carried out with the machine, operating in stand-alone configuration, or connected to the electrical grid, to test different control strategy influences. Particular attention has been given to tests performed at different electrical load values and with different mass flow rates through the recuperator ducts. The final section of this paper reports the transient analysis carried out on this recuperator. The attention is mainly focused on thermal transient performance of the component, showing the effects of both temperature and flow steps. [DOI: 10.1115/1.3156822].
ASME Turbo Expo 2007: Power for Land, Sea, and Air | 2007
Matteo Pascenti; Mario L. Ferrari; Loredana Magistri; Aristide F. Massardo
The Thermochemical Power Group (TPG) is building at the laboratory of the University of Genoa, Italy, a new high temperature fuel cell - micro gas turbine physical emulator based on commercial machine technology. The aim of this new test rig is the experimental analysis of the coupling of commercial machines with fuel cell stacks focusing the attention on the critical phases of start-up, shutdown and load changes. The experimental facility is composed of a Turbec T100 micro gas turbine package modified for the fuel cell emulator connection, a set of pipes designed for by-pass, measurement or bleed reasons, and a high temperature volume designed for the RRFCS stack dimension physical emulation. This experimental approach is essential for model validations, and to test different transient operative procedures and control systems without any risk for an expensive real fuel cell stack. This paper shows the preliminary experimental data obtained with the machine in stand alone configuration, focusing the attention on the comparison of these results with the tests performed with the external pipes. Furthermore, a theoretical transient model of this new experimental facility has been developed with the TRANSEO tool. It is essential for the rig design and to perform preliminary results necessary to prevent dangerous conditions during the tests. This paper reports a preliminary verification of this model performed with the facility.Copyright
Journal of Fuel Cell Science and Technology | 2011
Mario L. Ferrari; Matteo Pascenti; Loredana Magistri; Aristide F. Massardo
The Thermochemical Power Group (TPG) of the University of Genoa designed and installed a complete hybrid system emulator test rig equipped with a 100 kW recuperated micro gas turbine, a modular cathodic vessel located between recuperator outlet and combustor inlet, and an anodic recirculation system based on the coupling of a single stage ejector with an anodic vessel. The layout of the system was carefully designed, considering the coupling between a planar SOFC stack and the 100 kW commercial machine installed at TPG laboratory. A particular pressurized hybrid system was studied to define the anodic side properties in terms of mass flow rates, pressures, and temperatures. In this work, this experimental facility is used to analyze the anodic ejector performance from fluid dynamic and thermal points of view. The attention is mainly focused on the recirculation factor value in steady-state conditions. For this reason, a wide experimental campaign was carried out to measure the behavior of this property in different operative conditions with the objective to avoid carbon deposition in the anodic circuit, in the reformer, and in the fuel cell stack.
Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration | 2012
Mario L. Ferrari; Matteo Pascenti; Alberto Traverso; M. Rivarolo
This paper presents the development of a new experimental facility for analysis and optimization activities on smart polygeneration grids. The test rig is being designed and built in the framework of the European project “Energy-Hub for residential and commercial districts and transport” (E-HUB), which targets optimal energy management of residential and commercial districts.The experimental rig, named “Energy aNd Efficiency Research Demonstration District” (E-NERDD), is located inside the University campus in Savona, and is based on four different prime movers able to produce both electrical and thermal energy: a 100 kWe micro gas turbine, a 20 kWe internal combustion engine, a 3 kWe Stirling engine, and a 450 kWe fuel cell/gas turbine hybrid system emulator based on the coupling of a micro gas turbine with a modular vessel. While the electrical side is based on the connection with the campus grid (further developments are planned for a local electrical grid including storage units), thermal energy is managed through a dual ring-based water distribution system. The facility is also equipped with thermal storage tanks and fan cooler units to study and optimize different thermal management algorithms generating different thermal load demands. The facility also includes an absorption chiller for cold water generation. As a result, trigeneration operation is possible in a physically simulated urban district. Moreover, the rig is equipped with six photovoltaic panels (significant for the electrical aspects) and 10 kWp of thermal solar panels to be integrated in the grid.Further technologies to be considered for the E-NERDD are power plants based on other renewable resource (e.g. with biomass fuel). These systems are planned to be analyzed through real plants (remote connection with the field) or through virtual models based on real-time dynamic approaches.Experimental tests related to the performance of the micro gas turbine are reported and discussed in this paper. The focus here is on machine correction curves essential to evaluate factors for quantifying ambient temperature influence on machine performance. This analysis is essential for setting the thermal distribution grid and for future optimization tests.Copyright
Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy | 2006
Mario Luigi Ferrari; Matteo Pascenti; Aristide F. Massardo
The aim of this work is the experimental validation of a transient ejector model for hybrid system applications. This is a mandatory step in performing the transient analysis of the whole plant to avoid critical situations and to develop the control system. So, the anodic recirculation test rig already used in previous works to study the ejector design validating the steady-state 0-D and CFD models, was used in this work to perform tests at transient conditions and to validate the ejector transient model. An initial validation was carried out at steady-state conditions, then the ejector transient model was successfully compared with the experimental data, also under unsteady conditions. A second step was carried out to better investigate the whole anodic recirculation system. So, the validated ejector transient model was connected to the components necessary to simulate the pipes, the valves and the anodic volume. Also in this case, the calculated results were successfully compared with the experimental data obtained with the laboratory test rig. The final part of the paper is devoted to the results obtained at impulse conditions. In fact, this work investigates the effects on the anodic ejector and on the whole anodic circuit coming from fuel line impulses caused by possible unsteadiness conditions. The results obtained with impulses at different frequency values were successfully compared with the experimental data.Copyright
Volume 5: Microturbines and Small Turbomachinery; Oil and Gas Applications | 2009
Francesco Ghigliazza; Alberto Traverso; Matteo Pascenti; Aristide F. Massardo
This paper reports on the latest application of a generic time-dependent real-time simulation tool, originally developed for fuel cell gas turbine hybrid systems, and now applied to an actual micro gas turbine test rig. Real-time modeling is a recognized approach for monitoring advanced systems and improving control capabilities: applications of real-time models are commonly used in the automotive and aircraft fields. The overall objective is improving of calculation time in existing time-dependent simulation models, while retaining acceptable accuracy of results. The real-time modeling approach already applied to fuel cell gas turbine systems has here been validated against the experimental data from the micro gas turbine Turbec T100 test rig in Savona, Italy. The real-time model of the microturbine recuperator has been newly developed to fit such an application. Two representative transient operations have been selected for verification: the heating and cooling phases of the connected volume. The results already show an acceptable agreement with measurements, and they have contributed to a better insight into performance prediction for the entire plant.Copyright
Volume 2: Controls, Diagnostics and Instrumentation; Cycle Innovations; Electric Power | 2008
Mario Luigi Ferrari; Matteo Pascenti; Loredana Magistri; Aristide F. Massardo
The aim of this work, focused on natural gas fired distributed power systems, is the experimental analysis of the start-up and shutdown for high temperature fuel cell hybrid systems. These critical phases have been emulated using the micro gas turbine test rig developed by TPG at the University of Genoa, Italy. The rig is based on the coupling of a modified commercial 100 kWe recuperated gas turbine with a modular volume designed to emulate fuel cell stacks of different dimensions. It is essential to test the dynamic interaction between the machine and the fuel cell, and to develop different operative procedures and control systems without any risk to the expensive stack. This paper shows the preliminary experimental results obtained with the machine connected to the volume. The attention is mainly focused on avoiding surge and excessive stress on the machine components during the tests. Finally, after the presentation of the valve control system, this paper reports the emulation of the hybrid system start-up and shutdown phases. They have been performed to produce a gradual heating up and cooling down of the fuel cell volume, using the cold bypass line, three high temperature valves, and the machine load control system. This approach is necessary to avoid high thermal stress on the cell material, extremely dangerous for the plant life.Copyright
Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration | 2012
Andrea Tipa; Alessandro Sorce; Matteo Pascenti; Alberto Traverso
This paper describes the development and testing of a new algorithm to identify faulty sensors, based on a statistical model using quantitative statistical process history. Two different mathematical models were used and the results were analyzed to highlight the impact of model approximation and random error. Furthermore, a case study was developed based on a real micro gas turbine facility, located at the University of Genoa. The diagnostic sensor algorithm aims at early detection of measurement errors such as drift, bias, and accuracy degradation (increase of noise). The process description is assured by a database containing the measurements selected under steady state condition and without faults during the operating life of the plant. Using an invertible statistical model and a combinatorial approach, the algorithm is able to identify sensor fault. This algorithm could be applied to plants in which historical data are available and quasi steady state conditions are common (e.g. Nuclear, Coal Fired, Combined Cycle).Copyright
Archive | 2011
Mario Luigi Ferrari; Matteo Pascenti
During the last 15-20 years, microturbine (mGT) technology has become particularly attractive for power generation, especially in the perspective of the development of a distributed generation market (Kolanowski, 2004). The main advantages related to microturbines, in comparison to Diesel engines, are: smaller size and weight; fuel flexibility; lower emissions; lower noise; vibration-free operation; reduced maintenance. The development of a laboratory based on a large size gas turbine is usually not feasible at the University level for high costs of components and plant management. However, the microturbine (mGT) technology (Kolanowski, 2004) allows wide-ranging experimental activities on small size gas turbine cycles with a strong cost reduction. Moreover, this technology is promising from co-generative (and tri-generative) application point of view (Boyce, 2010), and is essential for advanced power plants, such as hybrid systems (Massardo et al., 2002), humid cycles (Lindquist et al., 2002), or externally fired cycles (Traverso et al., 2006). However, if microturbine standard cycle is modified by introducing innovative components, such as fuel cells (Magistri et al., 2002, 2005), saturators (Pedemonte et al., 2007) or new concept heat exchangers (such as ceramic recuperators (McDonald, 2003)), at least two main aspects have to be considered: avoiding dangerous conditions (e.g.: machine overspeed, surge, thermal and mechanical stress, carbon deposition); ensuring the proper feeding conditions to both standard and additional components. Moreover, the operation with new devices generates additional variables to be monitored, new risky conditions to be avoided and requires additional control system facilities (Ferrari, 2011). Experimental support is mandatory to develop advanced power plants based on microturbine technology and to build reliable systems ready for commercial distribution. A possible cheap solution to perform laboratory tests is related to emulator facilities able to generate similar effects of a real system. These are experimental rigs designed to study