Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Sofia is active.

Publication


Featured researches published by Matteo Sofia.


European Respiratory Journal | 2008

Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy

G De Laurentiis; Debora Paris; Dominique Melck; Mauro Maniscalco; Serafino A. Marsico; Gaetano Corso; Andrea Motta; Matteo Sofia

Exhaled breath condensate (EBC) is a noninvasive method for the study of airway lining fluid. Nuclear magnetic resonance (NMR) spectroscopy can provide biochemical profiles of metabolites in biological samples. The aim of the present study was to validate the NMR metabonomic analysis of EBC in adults, assessing the role of pre-analytical variables (saliva and disinfectant contamination) and the potential clinical feasibility. In total, 36 paired EBC and saliva samples, obtained from healthy subjects, laryngectomised patients and chronic obstructive pulmonary disease patients, were analysed by means of 1H-NMR spectroscopy followed by principal component analysis. The effect on EBC of disinfectant, used for reusable parts of the condenser, was assessed after different washing procedures. To evaluate intra-day repeatability, eight subjects were asked to collect EBC and saliva twice within the same day. All NMR saliva spectra were significantly different from corresponding EBC samples. EBC taken from condensers washed with recommended procedures invariably showed spectra perturbed by disinfectant. Each EBC sample clustered with corresponding samples of the same group, while presenting intergroup qualitative and quantitative signal differences (94% of the total variance within the data). In conclusion, the nuclear magnetic resonance metabonomic approach could identify the metabolic fingerprint of exhaled breath condensate in different clinical sets of data. Moreover, metabonomics of exhaled breath condensate in adults can discriminate potential perturbations induced by pre-analytical variables.


Multidisciplinary Respiratory Medicine | 2013

Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases

Gennaro D’Amato; Carlos E. Baena-Cagnani; Lorenzo Cecchi; Isabella Annesi-Maesano; Carlos Nunes; Ignacio J. Ansotegui; Maria D’Amato; Gennaro Liccardi; Matteo Sofia; Walter Canonica

The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favour the accumulation of air pollutants at ground level.Considering these aspects governments worldwide and international organizations such as the World Health Organization and the European Union are facing a growing problem of the respiratory effects induced by gaseous and particulate pollutants arising from motor vehicle emissions.


European Respiratory Journal | 2012

Nuclear magnetic resonance-based metabolomics of exhaled breath condensate: methodological aspects

Andrea Motta; Debora Paris; Dominique Melck; G De Laurentiis; Mauro Maniscalco; Matteo Sofia; Paolo Montuschi

To the Editors: Due to the lack of standardised procedures for exhaled breath condensate (EBC), a noninvasive technique for investigating lung inflammatory mediators [1], the between-laboratory comparison of results is difficult. Moreover, different collecting devices have been reported to influence the EBC content [2, 3]. The analysis of metabolic profiles (“metabolomics”) of EBC using nuclear magnetic resonance (NMR) spectroscopy discriminates between chronic obstructive pulmonary disease (COPD) patients and healthy subjects (HS) [4]; asthmatic children and HS [5]; and patients with stable cystic fibrosis and unstable cystic fibrosis and HS [6]. This approach has recently been questioned as NMR-based metabolomics of EBC collected using a condenser with reusable parts was reported to be affected by cleaning procedures, generating artificial signals that were not related to the endogenous metabolites of the lungs [7]. In this study we assessed the effects of a different cleaning procedure of a reusable-part condenser on EBC metabolomics; the possible time and carry-over effects when the same device is repeatedly used; technique sensitivity; the ability of NMR spectroscopy of EBC to discriminate between COPD patients and HS; and the potential of NMR spectroscopy in identifying selective EBC metabolites. If the cleaning procedure produces artificial signals in the NMR spectra of EBC, the separation between COPD patients and HS reported previously [4] is certainly surprising, as the residual signals derived from the disinfectant Descogen (Antiseptica chem.-pharm. Produkte GmbH, Pulheim/Brauweiler, Germnay) should have randomly affected both groups. Moreover, using a different reusable-part condenser, Carraro et al . [5] reported that NMR-based metabolomics of EBC differentiates asthmatic children from HS with a success rate of 86% [5]. To verify the influence of the disinfectant on EBC metabolomics, we modified the …


European Respiratory Journal | 2003

Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations

Mauro Maniscalco; E. Weitzberg; Johan Sundberg; Matteo Sofia; Jon O. Lundberg

Nasal nitric oxide (NO) levels increase greatly during humming compared to silent exhalation. In this study, the physiological and anatomical factors that regulate NO release during humming have been characterised in 10 healthy subjects and in a model of the sinus and the nose. Single-breath humming caused a large initial peak in nasal NO output, followed by a progressive decline. The NO peak decreased in a step-wise manner during repeated consecutive humming manoeuvres but recovered completely after a silent period of 3 min. Topical nasal application of an NO synthase inhibitor reduced nasal NO by >50% but had no effect on the increase evoked by humming. Silently exhaled nasal NO measured immediately after repeated humming manoeuvres was between 5–50% lower than basal silent NO exhalation, suggesting variable continuous contribution from the sinuses to nasal NO. Among the factors known to influence normal sinus ventilation, ostium size was the most critical during humming, but humming frequency was also of importance. In conclusion, humming results in a large increase in nasal nitric oxide, which is caused by a rapid gas exchange in the paranasal sinuses. Combined nasal nitric oxide measurement with and without humming could be of use to estimate sinus ventilation and to better separate nasal mucosal nitric oxide output from sinus nitric oxide in health and disease.


BioMed Research International | 2011

Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

Matteo Sofia; Mauro Maniscalco; Guglielmo de Laurentiis; Debora Paris; Dominique Melck; Andrea Motta

There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC) may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR) spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.


The International Journal of Biochemistry & Cell Biology | 2013

Adiponectin affects lung epithelial A549 cell viability counteracting TNFa and IL-1ß toxicity through AdipoR1

Ersilia Nigro; Olga Scudiero; Daniela Sarnataro; Gennaro Mazzarella; Matteo Sofia; Andrea Bianco; Aurora Daniele

Adiponectin (Acrp30) exerts protective functions on metabolic and cellular processes as energy metabolism, cell proliferation and differentiation by two widely expressed receptors, AdipoR1 and AdipoR2. To date, the biological role of Acrp30 in lung has not been completely assessed but altered levels of Acrp30 and modulated expression of both AdipoRs have been related to establishment and progression of chronic obstructive pulmonary disease (COPD) and lung cancer. Here, we investigated the effects of Acrp30 on A549, a human alveolar epithelial cell line, showing how, in a time and dose-dependent manner, it decreases cell viability and increases apoptosis through ERK1/2 and AKT. Furthermore, we examined the effects of Acrp30 on A549 cells exposed to TNFα and/or IL-1ß, two potent lung inflammatory cytokines. We showed that Acrp30, in dose- and time-dependent manner, reduces cytotoxic effects of TNFα and/or IL-1ß improving cell viability and decreasing apoptosis. In addition, Acrp30 inhibits NF-κB nuclear trans-activation and induces the expression of the anti-inflammatory IL-10 cytokine without modifying that of pro-inflammatory IL-6, IL-8, and MCP-1 molecules via ERK1/2 and AKT. Finally, specifically silencing AdipoR1 or AdipoR2, we observed that NF-κB inhibition is mainly mediated by AdipoR1. Taken together, our data provides novel evidence for a direct effect of Acrp30 on the proliferation and inflammation status of A549 cells strongly supporting the hypothesis for a protective role of Acrp30 in lung. Further studies are needed to fully elucidate the Acrp30 lung effects in vivo but our results confirm this adipokine as a promising therapeutic target in lung diseases.


The International Journal of Biochemistry & Cell Biology | 2012

Adiponectin oligomerization state and adiponectin receptors airway expression in chronic obstructive pulmonary disease

Aurora Daniele; Anna De Rosa; Ersilia Nigro; Olga Scudiero; Mario Capasso; Mariorosario Masullo; Guglielmo de Laurentiis; Giovannangelo Oriani; Matteo Sofia; Andrea Bianco

Adiponectin (Acrp30) shows several beneficial properties and circulates as different oligomers. The role of Acrp30 in lung is not fully clear, but a link with chronic obstructive pulmonary disease (COPD) has been highlighted. In this study, we analyzed the anthropometrical and biochemical features and evaluated total Acrp30 levels of a COPD cohort without metabolic complications compared to healthy controls. In addition, being the oligomerization state critical for its biological activities, we characterized the pattern of Acrp30 circulating oligomers focusing on the high molecular weight (HMW) oligomers to verify whether it correlates to COPD. Finally, we investigated AdipoR1 and AdipoR2 expression in lung from COPD. Interestingly, we found for the first time that the oligomerization state of Acrp30 is altered in COPD; particularly, we observed that the higher levels of Acrp30 are associated with a significant and specific increase of HMW. In addition, we demonstrated the presence of AdipoRs with a lower expression of AdipoR2 compared to AdipoR1. In conclusion, we demonstrated that in COPD, the higher levels of Acrp30 are associated with the significantly increase of HMW representing the most biologically active forms. The important role of Acrp30 in pathophysiological conditions of lung is supported also by the modulation of AdipoRs with the down regulation of AdipoR2. The low expression of AdipoR2 could suggest a specific role of this receptor, mainly implicated in Acrp30 effects on inflammation and oxidative stress. Thus, total Acrp30, HMW and its receptors could be considered critical targets to improve diagnostic and therapeutic strategies for lung diseases.


European Journal of Clinical Investigation | 2006

Sounding airflow enhances aerosol delivery into the paranasal sinuses

Mauro Maniscalco; Matteo Sofia; E. Weitzberg; Jon O. Lundberg

Background  The use of aerosol therapy is commonly suggested in the treatment of paranasal disorders but it is difficult to achieve an effective penetration of drugs into the sinuses. The authors have recently shown that an oscillating airflow produced by phonation (nasal humming) causes a large increase in the gas exchange between the nose and the paranasal sinuses. This is reflected by a high peak in nasally exhaled nitric oxide (NO) levels because NO accumulated in the sinuses is rapidly washed‐out via the sinus ostia.


European Journal of Clinical Investigation | 2004

Humming-induced release of nasal nitric oxide for assessment of sinus obstruction in allergic rhinitis: pilot study

Mauro Maniscalco; Matteo Sofia; E. Weitzberg; G. de Laurentiis; Anna Agnese Stanziola; V. Rossillo; Jon O. Lundberg

Background  Humming greatly increases nasal nitric oxide (NO) in healthy people by causing a rapid washout of NO from the sinuses. This increase is abolished in patients with complete sinus ostial obstruction.


Nutrients | 2013

Adiponectin: an attractive marker for metabolic disorders in Chronic Obstructive Pulmonary Disease (COPD).

Andrea Bianco; Gennaro Mazzarella; Viviana Turchiarelli; Ersilia Nigro; Graziamaria Corbi; Olga Scudiero; Matteo Sofia; Aurora Daniele

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease which may be complicated by development of co-morbidities including metabolic disorders. Metabolic disorders commonly associated with this disease contribute to lung function impairment and mortality. Systemic inflammation appears to be a major factor linking COPD to metabolic alterations. Adipose tissue seems to interfere with systemic inflammation in COPD patients by producing a large number of proteins, known as “adipokines”, involved in various processes such as metabolism, immunity and inflammation. There is evidence that adiponectin is an important modulator of inflammatory processes implicated in airway pathophysiology. Increased serum levels of adiponectin and expression of its receptors on lung tissues of COPD patients have recently highlighted the importance of the adiponectin pathway in this disease. Further, in vitro studies have demonstrated an anti-inflammatory activity for this adipokine at the level of lung epithelium. This review focuses on mechanisms by which adiponectin is implicated in linking COPD with metabolic disorders.

Collaboration


Dive into the Matteo Sofia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Agnese Stanziola

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Stanislao Faraone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Motta

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guglielmo de Laurentiis

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Dominique Melck

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge