Matteo Zampini
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Zampini.
The FASEB Journal | 2013
Daniela Cimino; Cristiano De Pittà; Francesca Orso; Matteo Zampini; Silvia Casara; Elisa Penna; Elena Quaglino; Marco Forni; Christian Damasco; Eva Pinatel; Riccardo Ponzone; Chiara Romualdi; Cathrin Brisken; Michele De Bortoli; Nicoletta Biglia; Paolo Provero; Gerolamo Lanfranchi; Daniela Taverna
Breast cancer is often fatal during its metastatic dissemination. To unravel the role of microRNAs (miRs) during malignancy, we analyzed miR expression in 77 primary breast carcinomas and identified 16 relapse‐associated miRs that correlate with survival and/or distinguish tumor subtypes in different datasets. Among them, miR‐148b, down‐regulated in aggressive breast tumors, was found to be a major coordinator of malignancy. In fact, it is able to oppose various steps of tumor progression when overexpressed in cell lines by influencing invasion, survival to anoikis, extravasation, lung metastasis formation, and chemotherapy response. miR‐148b controls malignancy by coordinating a novel pathway involving over 130 genes and, in particular, it directly targets players of the integrin signaling, such as ITGA5, ROCK1, PIK3CA/p110α, and NRAS, as well as CSF1, a growth factor for stroma cells. Our findings reveal the importance of the identified 16 miRs for disease outcome predictions and suggest a critical role for miR‐148b in the control of breast cancer progression.—Cimino, D., De Pittà, C., Orso, F., Zampini, M., Casara, C., Penna, E., Quaglino, E., Forni, M., Damasco, C., Pinatel, E., Ponzone, R., Romualdi, C., Brisken, C., De Bortoli, M., Biglia, N., Provero, P., Lanfranchi, G., Taverna, D. miR148b is a major coordinator of breast cancer progression in a relapse‐associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. 27, 1223–1235 (2013). www.fasebj.org
Molecular Cancer | 2017
Thilini R. Fernando; Jorge R. Contreras; Matteo Zampini; Norma I. Rodriguez-Malave; Michael O. Alberti; Jaime Anguiano; Tiffany M. Tran; Jayanth Kumar Palanichamy; Jasmine Gajeton; Nolan M. Ung; Cody J. Aros; Ella Waters; David Casero; Giuseppe Basso; Martina Pigazzi; Dinesh S. Rao
BackgroundLong non-coding RNAs (lncRNAs) play a variety of cellular roles, including regulation of transcription and translation, leading to alterations in gene expression. Some lncRNAs modulate the expression of chromosomally adjacent genes. Here, we assess the roles of the lncRNA CASC15 in regulation of a chromosomally nearby gene, SOX4, and its function in RUNX1/AML translocated leukemia.ResultsCASC15 is a conserved lncRNA that was upregulated in pediatric B-acute lymphoblastic leukemia (B-ALL) with t (12; 21) as well as pediatric acute myeloid leukemia (AML) with t (8; 21), both of which are associated with relatively better prognosis. Enforced expression of CASC15 led to a myeloid bias in development, and overall, decreased engraftment and colony formation. At the cellular level, CASC15 regulated cellular survival, proliferation, and the expression of its chromosomally adjacent gene, SOX4. Differentially regulated genes following CASC15 knockdown were enriched for predicted transcriptional targets of the Yin and Yang-1 (YY1) transcription factor. Interestingly, we found that CASC15 enhances YY1-mediated regulation of the SOX4 promoter.ConclusionsOur findings represent the first characterization of this CASC15 in RUNX1-translocated leukemia, and point towards a mechanistic basis for its action.
PLOS ONE | 2015
Lucia Tombolan; Matteo Zampini; Silvia Casara; Elena Boldrin; Angelica Zin; Gianni Bisogno; Angelo Rosolen; Cristiano De Pittà; Gerolamo Lanfranchi
Background Rhabdomyosarcomas (RMS) are rare but very aggressive childhood tumors that arise as a consequence of a regulatory disruption in the growth and differentiation pathways of myogenic precursor cells. According to morphological criteria, there are two major RMS subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS) with the latter showing greater aggressiveness and metastatic potential with respect to the former. Efforts to unravel the complex molecular mechanisms underlying RMS pathogenesis and progression have revealed that microRNAs (miRNAs) play a key role in tumorigenesis. Methodology/Principal Findings The expression profiles of 8 different RMS cell lines were analyzed to investigate the involvement of miRNAs in RMS. The miRNA population from each cell line was compared to a reference sample consisting of a balanced pool of total RNA extracted from those 8 cell lines. Sixteen miRNAs whose expression discriminates between translocation-positive ARMS and negative RMS were identified. Attention was focused on the role of miR-27a that is up-regulated in the more aggressive RMS cell lines (translocation-positive ARMS) in which it probably acts as an oncogene. MiR-27a overexpressing cells showed a significant increase in their proliferation rate that was paralleled by a decrease in the number of cells in the G1 phase of the cell cycle. It was possible to demonstrate that miR-27a is implicated in cell cycle control by targeting the retinoic acid alpha receptor (RARA) and retinoic X receptor alpha (RXRA). Conclusions Study results have demonstrated that miRNA expression signature profiling can be used to classify different RMS subtypes and suggest that miR-27a may have a therapeutic potential in RMS by modulating the expression of retinoic acid receptors.
Leukemia | 2017
Elena Manara; G Basso; Matteo Zampini; Barbara Buldini; Claudia Tregnago; Roberto Rondelli; Riccardo Masetti; Valeria Bisio; M Frison; K Polato; G Cazzaniga; Giuseppe Menna; Franca Fagioli; P Merli; Andrea Biondi; Annalisa Pession; F Locatelli; Martina Pigazzi
Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.
Leukemia | 2016
Claudia Tregnago; Elena Manara; Matteo Zampini; Valeria Bisio; C Borga; Silvia Bresolin; S Aveic; Giuseppe Germano; G Basso; Martina Pigazzi
cAMP response element binding protein (CREB) is frequently overexpressed in acute myeloid leukemia (AML) and acts as a proto-oncogene; however, it is still debated whether such overactivation alone is able to induce leukemia as its pathogenetic downstream signaling is still unclear. We generated a zebrafish model overexpressing CREB in the myeloid lineage, which showed an aberrant regulation of primitive hematopoiesis, and in 79% of adult CREB-zebrafish a block of myeloid differentiation, triggering to a monocytic leukemia akin the human counterpart. Gene expression analysis of CREB-zebrafish revealed a signature of 20 differentially expressed human homologous CREB targets in common with pediatric AML. Among them, we demonstrated that CREB overexpression increased CCAAT-enhancer-binding protein-δ (C/EBPδ) levels to cause myeloid differentiation arrest, and the silencing of CREB-C/EBPδ axis restored myeloid terminal differentiation. Then, C/EBPδ overexpression was found to identify a subset of pediatric AML affected by a block of myeloid differentiation at monocytic stage who presented a significant higher relapse risk and the enrichment of aggressive signatures. Finally, this study unveils the aberrant activation of CREB-C/EBPδ axis concurring to AML onset by disrupting the myeloid cell differentiation process. We provide a novel in vivo model to perform high-throughput drug screening for AML cure improvement.
Leukemia | 2017
Valeria Bisio; Matteo Zampini; Claudia Tregnago; Elena Manara; Valentina Salsi; A Di Meglio; Riccardo Masetti; Marco Togni; Dina Di Giacomo; Sonia Minuzzo; Anna Leszl; Vincenzo Zappavigna; Roberto Rondelli; Cristina Mecucci; Andrea Pession; Franco Locatelli; G Basso; Martina Pigazzi
NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group
Leukemia | 2018
Matteo Zampini; Claudia Tregnago; Valeria Bisio; Luca Simula; Giulia Borella; Elena Manara; Carlo Zanon; Francesca Zonta; Valentina Serafin; Benedetta Accordi; Silvia Campello; Barbara Buldini; Andrea Pession; Franco Locatelli; Giuseppe Basso; Martina Pigazzi
The somatic translocation t(8;21)(q22;q22)/RUNX1-RUNX1T1 is one of the most frequent rearrangements found in children with standard-risk acute myeloid leukemia (AML). Despite the favorable prognostic role of this aberration, we recently observed a higher than expected frequency of relapse. Here, we employed an integrated high-throughput approach aimed at identifying new biological features predicting relapse among 34 t(8;21)-rearranged patients. We found that the DNA methylation status of patients who suffered from relapse was peculiarly different from that of children maintaining complete remission. The epigenetic signature, made up of 337 differentially methylated regions, was then integrated with gene and protein expression profiles, leading to a network, where cell-to-cell adhesion and cell-motility pathways were found to be aberrantly activated in relapsed patients. We identified most of these factors as RUNX1-RUNX1T1 targets, with Ras Homolog Family Member (RHOB) overexpression being the core of this network. We documented how RHOB re-organized the actin cytoskeleton through its downstream ROCK–LIMK–COFILIN axis: this increases blast adhesion by stress fiber formation, and reduces mitochondrial apoptotic cell death after chemotherapy treatment. Altogether, our data show an epigenetic heterogeneity within t(8;21)-rearranged AML patients at diagnosis able to influence the program of the chimeric transcript, promoting blast re-emergence and progression to relapse.
British Journal of Haematology | 2017
Matteo Zampini; Valeria Bisio; Anna Leszl; Maria Caterina Putti; Giuseppe Menna; Carmelo Rizzari; Andrea Pession; Franco Locatelli; Giuseppe Basso; Claudia Tregnago; Martina Pigazzi
Children with acute myeloid leukaemia (AML) harbouring CBF anomalies notoriously have a more favourable prognosis than other AML cytogenetic subgroups. In the Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP)-AML 2002/01 protocol, these patients were allocated to the standard-risk (SR) group and all achieved morphological complete remission (CR) after induction therapy (Pession et al, 2013; Manara et al, 2014). However, approximately one-third of them – in particular those harbouring t(8;21)RUNX1/ RUNX1T1 – relapsed (Pession et al, 2013). These results prompted us to refine the definition of SR, trying to identify those t(8;21) AML patients who could be pre-emptively directed to an increased chemotherapy treatment or to allogeneic haematopoietic stem cell transplantation to properly tackle their higher risk to relapse. To this purpose, we performed, for the first time, a retrospective analysis to identify a prognostic model, based on micro RNA (miRNA) expression, capable of enhancing the prediction of recurrence in paediatric t(8;21) AML patients. We determined the miRNA expression profile of 33 patients enrolled in AIEOP AML 2002/01. In our cohort, 14 out of 33 (42 4%) patients suffered relapse after a median time of 280 days and 6 of them
Blood | 2016
Claudia Tregnago; Matteo Zampini; Valeria Bisio; Barbara Buldini; Stefano Indraccolo; Giuseppe Basso; Franco Locatelli; Martina Pigazzi
Blood | 2016
Jorge R. Contreras; Thilini R. Fernando; Tiffany M. Tran; Matteo Zampini; Norma I. Rodriguez-Malave; Jayanth Kumar Palanichamy; Jasmine Gajeton; Nolan Ung; David Casero; Giuseppe Basso; Martina Pigazzi; Dinesh S. Rao