Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthäus U. Bäbler is active.

Publication


Featured researches published by Matthäus U. Bäbler.


Physical Review E | 2009

Breakup of dense colloidal aggregates under hydrodynamic stresses

Alessio Zaccone; Miroslav Soos; Marco Lattuada; Hua Wu; Matthäus U. Bäbler; Massimo Morbidelli

Flow-induced aggregation of colloidal particles leads to aggregates with fairly high fractal dimension (df approximately 2.4-3.0) which are directly responsible for the observed rheological properties of sheared dispersions. We address the problem of the decrease in aggregate size with increasing hydrodynamic stress, as a consequence of breakup, by means of a fracture-mechanics model complemented by experiments in a multipass extensional (laminar) flow device. Evidence is shown that as long as the inner density decay with linear size within the aggregate (due to fractality) is not negligible (as for df approximately 2.4-2.8), this imposes a substantial limitation to the hydrodynamic fragmentation process as compared with nonfractal aggregates (where the critical stress is practically size independent). This is due to the fact that breaking up a fractal object leads to denser fractals which better withstand stress. In turbulent flows, accounting for intermittency introduces just a small deviation with respect to the laminar case, while the model predictions are equally in good agreement with experiments from the literature. Our findings are summarized in a diagram for the breakup exponent (governing the size versus stress scaling) as a function of fractal dimension.


Langmuir | 2010

Aggregate Breakup in a Contracting Nozzle

Miroslav Soos; Lyonel Ehrl; Matthäus U. Bäbler; Massimo Morbidelli

The breakup of dense aggregates in an extensional flow was investigated experimentally. The flow was realized by pumping the suspension containing the aggregates through a contracting nozzle. Variation of the cluster mass distribution during the breakage process was measured by small-angle light scattering. Because of the large size of primary particles and the dense aggregate structure image analysis was used to determine the shape and structure of the produced fragments. It was found, that neither aggregate structure, characterized by a fractal dimension d(f) = 2.7, nor shape, characterized by an average aspect ratio equal to 1.5, was affected by breakage. Several passes through the nozzle were required to reach the steady state. This is explained by the radial variation of the hydrodynamic stresses at the nozzle entrance, characterized through computational fluid dynamics, which implies that only the fraction of aggregates whose strength is smaller than the local hydrodynamic stress is broken during one pass through the nozzle. Scaling of the steady-state aggregate size as a function of the hydrodynamic stress was used to determine the aggregate strength.


Journal of Fluid Mechanics | 2008

Modelling the breakup of solid aggregates in turbulent flows

Matthäus U. Bäbler; Massimo Morbidelli; Jerzy Bałdyga

The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogen ...


Physics of Fluids | 2006

Hydrodynamic interactions and orthokinetic collisions of porous aggregates in the Stokes regime

Matthäus U. Bäbler; Jan Sefcik; Massimo Morbidelli; Jerzy Bałdyga

The hydrodynamic interaction of two neutrally buoyant porous aggregates is investigated under creeping flow conditions for the case where the undisturbed velocity of the surrounding flow field is a linear function of position. In this framework, the relative velocity between two aggregates is given by the deformation of the undisturbed flow expressed through the rate of strain and the angular velocity of the flow field, and by two flow-independent hydrodynamic functions, typically referred to as A and B, which account for the disturbance of the flow field due to the presence of the particles [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375 (1972)]. In the present paper, the analysis of the hydrodynamic interaction that is known for the case of two impermeable, solid particles is extended to the case of porous aggregates by applying Brinkman’s equation to describe the flow within the aggregates. A reflection scheme is applied to calculate A and B and the obtained expressions are applied to interpre...


Physical Review E | 2012

Breakup of small aggregates driven by turbulent hydrodynamical stress.

Matthäus U. Bäbler; Luca Biferale; Alessandra S. Lanotte

The breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and by using direct numerical simulations at high Reynolds number, Reλ =/~ 400. We show that turbulent fluctuations of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass distribution function. The differences between turbulent and laminar flows are discussed. A definition of the fragmentation rate is proposed in terms of the typical frequency at which the hydrodynamic stress becomes sufficiently high to cause breakup along each Lagrangian path. We also define an Eulerian proxy of the real fragmentation rate, based on the joint statistics of the stress and its time derivative, which should be easier to measure in any experimental setup. Both our Eulerian and Lagrangian formulations define a clear procedure for the computation of the mass distribution function due to fragmentation. Contrary, previous estimates based only on single point statistics of the hydrodynamic stress exhibit some deficiencies. These are discussed by investigating the evolution of an ensemble of aggregates undergoing breakup and aggregation.


Langmuir | 2010

Structure and kinetics of shear aggregation in turbulent flows. I. Early stage of aggregation.

Matthäus U. Bäbler; Amgad S. Moussa; Miroslav Soos; Massimo Morbidelli

Aggregation of rigid colloidal particles leads to fractal-like structures that are characterized by a fractal dimension d(f) which is a key parameter for describing aggregation processes. This is particularly true in shear aggregation where d(f) strongly influences aggregation kinetics. Direct measurement of d(f) in the early stages of shear aggregation is however difficult, as the aggregates are small and few in number. An alternative method for determining d(f) is to use an aggregation model that when fitted to the time evolution of the cluster mass distribution allows for estimating d(f). Here, we explore three such models, two of which are based on an effective collision sphere and one which directly incorporates the permeable structure of the aggregates, and we apply them for interpreting the initial aggregate growth measured experimentally in a turbulent stirred tank reactor. For the latter, three polystyrene latexes were used that differed only in the size of the primary particles (d(p) = 420, 600, and 810 nm). It was found that all three models describe initial aggregation kinetics reasonably well using, however, substantially different values for d(f). To discriminate among the models, we therefore also studied the regrowth of preformed aggregates where d(f) was experimentally accessible. It was found that only the model that directly incorporates the permeable structure of the aggregates is able to predict correctly this second type of experiments. Applying this model to the initial aggregation kinetics, we conclude that the actual initial fractal dimension is d(f) = 2.07 +/- 0.04 as found from this model.


Journal of Fluid Mechanics | 2015

Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows

Matthäus U. Bäbler; Luca Biferale; Luca Brandt; Ulrike Feudel; Ksenia Guseva; Alessandra S. Lanotte; Cristian Marchioli; Francesco Picano; Gaetano Sardina; Alfredo Soldati; Federico Toschi

Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress sigma similar to epsilon(1/2), with epsilon being the energy dissipation at the position of the aggregate, overcomes a given threshold sigma(cr), which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.


Langmuir | 2014

Experimental characterization of breakage rate of colloidal aggregates in axisymmetric extensional flow.

Debashish Saha; Miroslav Soos; Beat Lüthi; Markus Holzner; Alex Liberzon; Matthäus U. Bäbler; Wolfgang Kinzelbach

Aggregates prepared under fully destabilized conditions by the action of Brownian motion were exposed to an extensional flow generated at the entrance of a sudden contraction. Two noninvasive techniques were used to monitor their breakup process [i.e. light scattering and three-dimensional (3D) particle tracking velocimetry (3D-PTV)]. While the first one can be used to measure the size and the morphology of formed fragments after the breakage event, the latter is capable of resolving trajectories of individual aggregates up to the breakage point as well as the trajectories of formed fragments. Furthermore, measured velocity gradients were used to determine the local hydrodynamic conditions at the breakage point. All this information was combined to experimentally determine for the first time the breakage rate of individual aggregates, given in the form of a size reduction rate K(R), as a function of the applied strain rate, as well as the properties of the formed fragments (i.e., the number of formed fragments and the size ratio between the largest fragment and the original aggregate). It was found that K(R) scales with the applied strain rate according to a power law with the slope being dependent on the initial fractal dimension only, while the obtained data indicates a linear dependency of K(R) with the initial aggregate size. Furthermore, the probability distribution function (PDF) of the number of formed fragments and the PDF of the size ratio between the largest fragment and the original aggregate indicate that breakage will result with high probability (75%) in the formation of two to three fragments with a rather asymmetric ratio of sizes of about 0.8. The obtained results are well in agreement with the results from the numerical simulations published in the literature.


Langmuir | 2016

Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

Debashish Saha; Matthäus U. Bäbler; Markus Holzner; Miroslav Soos; Beat Lüthi; Alex Liberzon; Wolfgang Kinzelbach

Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.


Archive | 2018

Breakup of Individual Colloidal Aggregates in Turbulent Flow Investigated by 3D Particle Tracking Velocimetry

Matthäus U. Bäbler; Alex Liberzon; Debashish Saha; Markus Holzner; Miroslav Soos; Beat Lüthi; Wolfgang Kinzelbach

Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence where their breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). T ...

Collaboration


Dive into the Matthäus U. Bäbler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Tilliander

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Jonsson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramiar Sadegh-Vaziri

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Klas Engvall

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lina N. Samuelsson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge