Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Hannah is active.

Publication


Featured researches published by Matthew A. Hannah.


PLOS Genetics | 2005

A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana

Matthew A. Hannah; Arnd G. Heyer; Dirk K. Hincha

Many temperate plant species such as Arabidopsis thaliana are able to increase their freezing tolerance when exposed to low, nonfreezing temperatures in a process called cold acclimation. This process is accompanied by complex changes in gene expression. Previous studies have investigated these changes but have mainly focused on individual or small groups of genes. We present a comprehensive statistical analysis of the genome-wide changes of gene expression in response to 14 d of cold acclimation in Arabidopsis, and provide a large-scale validation of these data by comparing datasets obtained for the Affymetrix ATH1 Genechip and MWG 50-mer oligonucleotide whole-genome microarrays. We combine these datasets with existing published and publicly available data investigating Arabidopsis gene expression in response to low temperature. All data are integrated into a database detailing the cold responsiveness of 22,043 genes as a function of time of exposure at low temperature. We concentrate our functional analysis on global changes marking relevant pathways or functional groups of genes. These analyses provide a statistical basis for many previously reported changes, identify so far unreported changes, and show which processes predominate during different times of cold acclimation. This approach offers the fullest characterization of global changes in gene expression in response to low temperature available to date.


Plant Physiology | 2006

Natural Genetic Variation of Freezing Tolerance in Arabidopsis

Matthew A. Hannah; Dana Wiese; Susanne Freund; Oliver Fiehn; Arnd G. Heyer; Dirk K. Hincha

Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.


BMC Bioinformatics | 2006

PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments

Axel Nagel; Dirk Steinhauser; Yves Gibon; Oliver Bläsing; Henning Redestig; Nese Sreenivasulu; Leonard Krall; Matthew A. Hannah; Fabien Porée; Alisdair R. Fernie; Mark Stitt

BackgroundMicroarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis.ResultsHere we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete users guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/.ConclusionPageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.


New Phytologist | 2009

Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus.

Mike Guether; Raffaella Balestrini; Matthew A. Hannah; Ji He; Michael K. Udvardi; Paola Bonfante

* Arbuscular mycorrhizas (AMs) contribute significantly to soil nutrient uptake in plants. As a consequence of the fungal colonization and of the deep reorganization shown by arbusculated cells, important impacts on root transcriptome are expected. * An Affymetrix GeneChip with 50,000 probe-sets and real-time RT-PCR allowed us to detect transcriptional changes triggered in Lotus japonicus by the AM fungus Gigaspora margarita, when arbuscules are at their maximum (28 d postinoculation (dpi)). An early time (4 dpi) was selected to differentiate genes potentially involved in signaling and/or in colonization of outer tissues. * A large number (75 out of 558) of mycorrhiza-induced genes code for proteins involved in protein turnover, membrane dynamics and cell wall synthesis, while many others are involved in transport (47) or transcription (24). Induction of a subset (24 genes) of these was tested and confirmed by qRT-PCR, and transcript location in arbusculated cells was demonstrated for seven genes using laser-dissected cells. * When compared with previously published papers, the transcript profiles indicate the presence of a core set of responsive genes (25) that seem to be conserved irrespective of the symbiotic partner identity.


Plant Physiology | 2008

Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome

Zuzanna Bieniawska; Carmen Espinoza; Armin Schlereth; Ronan Sulpice; Dirk K. Hincha; Matthew A. Hannah

In plants, low temperature causes massive transcriptional changes, many of which are presumed to be involved in the process of cold acclimation. Given the diversity of developmental and environmental factors between experiments, it is surprising that their influence on the identification of cold-responsive genes is largely unknown. A systematic investigation of genes responding to 1 d of cold treatment revealed that diurnal- and circadian-regulated genes are responsible for the majority of the substantial variation between experiments. This is contrary to the widespread assumption that these effects are eliminated using paired diurnal controls. To identify the molecular basis for this variation, we performed targeted expression analyses of diurnal and circadian time courses in Arabidopsis (Arabidopsis thaliana). We show that, after a short initial cold response, in diurnal conditions cold reduces the amplitude of cycles for clock components and dampens or disrupts the cycles of output genes, while in continuous light all cycles become arrhythmic. This means that genes identified as cold-responsive are dependent on the time of day the experiment was performed and that a control at normal temperature will not correct for this effect, as was postulated up to now. Time of day also affects the number and strength of expression changes for a large number of transcription factors, and this likely further contributes to experimental differences. This reveals that interactions between cold and diurnal regulation are major factors in shaping the cold-responsive transcriptome and thus will be an important consideration in future experiments to dissect transcriptional regulatory networks controlling cold acclimation. In addition, our data revealed differential effects of cold on circadian output genes and a unique regulation of an oscillator component, suggesting that cold treatment could also be an important tool to probe circadian and diurnal regulatory mechanisms.


Plant Journal | 2011

High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions

Camila Caldana; Thomas Degenkolbe; Álvaro Cuadros-Inostroza; Sebastian Klie; Ronan Sulpice; Andrea Leisse; Dirk Steinhauser; Alisdair R. Fernie; Lothar Willmitzer; Matthew A. Hannah

The time-resolved response of Arabidopsis thaliana towards changing light and/or temperature at the transcriptome and metabolome level is presented. Plants grown at 21°C with a light intensity of 150 μE m⁻² sec⁻¹ were either kept at this condition or transferred into seven different environments (4°C, darkness; 21°C, darkness; 32°C, darkness; 4°C, 85 μE m⁻² sec⁻¹; 21 °C, 75 μE m⁻² sec⁻¹; 21°C, 300 μE m⁻² sec⁻¹ ; 32°C, 150 μE m⁻² sec⁻¹). Samples were taken before (0 min) and at 22 time points after transfer resulting in (8×) 22 time points covering both a linear and a logarithmic time series totaling 177 states. Hierarchical cluster analysis shows that individual conditions (defined by temperature and light) diverge into distinct trajectories at condition-dependent times and that the metabolome follows different kinetics from the transcriptome. The metabolic responses are initially relatively faster when compared with the transcriptional responses. Gene Ontology over-representation analysis identifies a common response for all changed conditions at the transcriptome level during the early response phase (5-60 min). Metabolic networks reconstructed via metabolite-metabolite correlations reveal extensive environment-specific rewiring. Detailed analysis identifies conditional connections between amino acids and intermediates of the tricarboxylic acid cycle. Parallel analysis of transcriptional changes strongly support a model where in the absence of photosynthesis at normal/high temperatures protein degradation occurs rapidly and subsequent amino acid catabolism serves as the main cellular energy supply. These results thus demonstrate the engagement of the electron transfer flavoprotein system under short-term environmental perturbations.


PLOS ONE | 2009

Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants.

Niels Høgslund; Simona Radutoiu; Lene Krusell; Vera Voroshilova; Matthew A. Hannah; Nicolas Goffard; Diego H. Sanchez; Felix Lippold; Thomas Ott; Shusei Sato; Satoshi Tabata; Poul Liboriussen; Gitte Vestergaard Lohmann; Leif Schauser; Georg F. Weiller; Michael K. Udvardi; Jens Stougaard

Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set.


PLOS ONE | 2010

Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis

Carmen Espinoza; Thomas Degenkolbe; Camila Caldana; Ellen Zuther; Andrea Leisse; Lothar Willmitzer; Dirk K. Hincha; Matthew A. Hannah

In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C) affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further supported by our demonstration of impaired cold acclimation in a circadian mutant.


BMC Bioinformatics | 2009

TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data

Álvaro Cuadros-Inostroza; Camila Caldana; Henning Redestig; Miyako Kusano; Jan Lisec; Hugo Peña-Cortés; Lothar Willmitzer; Matthew A. Hannah

BackgroundMetabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks.ResultsWe introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R.ConclusionsTargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data.


Plant Physiology | 2010

Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories

Catherine Massonnet; Denis Vile; Juliette Fabre; Matthew A. Hannah; Camila Caldana; Jan Lisec; Gerrit T.S. Beemster; Rhonda C. Meyer; Gaëlle Messerli; Jesper T. Gronlund; Josip Perkovic; Emma Wigmore; Sean T. May; Michael W. Bevan; Christian Meyer; Silvia Rubio-Díaz; Detlef Weigel; José Luis Micol; Vicky Buchanan-Wollaston; Fabio Fiorani; Sean Walsh; Bernd Rinn; Wilhelm Gruissem; Pierre Hilson; Lars Hennig; Lothar Willmitzer; Christine Granier

A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories.

Collaboration


Dive into the Matthew A. Hannah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge