Matthew A. Inlay
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew A. Inlay.
Nature | 2010
Hong-chen Ji; Lauren I. R. Ehrlich; Jun Seita; Peter Murakami; Akiko Doi; Paul Lindau; Hwajin Lee; Martin J. Aryee; Rafael A. Irizarry; Kitai Kim; Derrick J. Rossi; Matthew A. Inlay; Thomas Serwold; Holger Karsunky; Lena Ho; George Q. Daley; Irving L. Weissman; Andrew P. Feinberg
Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted myeloid or lymphoid progenitors. Although DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs, a comprehensive DNA methylation map of haematopoietic progenitors, or of any multipotent/oligopotent lineage, does not exist. Here we examined 4.6 million CpG sites throughout the genome for MPPs, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Marked epigenetic plasticity accompanied both lymphoid and myeloid restriction. Myeloid commitment involved less global DNA methylation than lymphoid commitment, supported functionally by myeloid skewing of progenitors following treatment with a DNA methyltransferase inhibitor. Differential DNA methylation correlated with gene expression more strongly at CpG island shores than CpG islands. Many examples of genes and pathways not previously known to be involved in choice between lymphoid/myeloid differentiation have been identified, such as Arl4c and Jdp2. Several transcription factors, including Meis1, were methylated and silenced during differentiation, indicating a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome seems to be important in haematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation and defines a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions.
Nature Biotechnology | 2011
Chad Tang; Andrew S. Lee; Jens Peter Volkmer; Debashis Sahoo; Divya Nag; Adriane R. Mosley; Matthew A. Inlay; Reza Ardehali; Shawn L. Chavez; Renee A. Reijo Pera; B. Behr; Joseph C. Wu; Irving L. Weissman; Micha Drukker
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti–stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs—the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.
Genes & Development | 2009
Matthew A. Inlay; Deepta Bhattacharya; Debashis Sahoo; Thomas Serwold; Jun Seita; Holger Karsunky; Sylvia K. Plevritis; David L. Dill; Irving L. Weissman
Common lymphoid progenitors (CLPs) clonally produce both B- and T-cell lineages, but have little myeloid potential in vivo. However, some studies claim that the upstream lymphoid-primed multipotent progenitor (LMPP) is the thymic seeding population, and suggest that CLPs are primarily B-cell-restricted. To identify surface proteins that distinguish functional CLPs from B-cell progenitors, we used a new computational method of Mining Developmentally Regulated Genes (MiDReG). We identified Ly6d, which divides CLPs into two distinct populations: one that retains full in vivo lymphoid potential and produces more thymocytes at early timepoints than LMPP, and another that behaves essentially as a B-cell progenitor.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Diane Tseng; Jens-Peter Volkmer; Stephen B. Willingham; Humberto Contreras-Trujillo; John W. Fathman; Nathaniel B. Fernhoff; Jun Seita; Matthew A. Inlay; Kipp Weiskopf; Masanori Miyanishi; Irving L. Weissman
Mobilization of the T-cell response against cancer has the potential to achieve long-lasting cures. However, it is not known how to harness antigen-presenting cells optimally to achieve an effective antitumor T-cell response. In this study, we show that anti-CD47 antibody–mediated phagocytosis of cancer by macrophages can initiate an antitumor T-cell immune response. Using the ovalbumin model antigen system, anti-CD47 antibody–mediated phagocytosis of cancer cells by macrophages resulted in increased priming of OT-I T cells [cluster of differentiation 8-positive (CD8+)] but decreased priming of OT-II T cells (CD4+). The CD4+ T-cell response was characterized by a reduction in forkhead box P3-positive (Foxp3+) regulatory T cells. Macrophages following anti-CD47–mediated phagocytosis primed CD8+ T cells to exhibit cytotoxic function in vivo. This response protected animals from tumor challenge. We conclude that anti-CD47 antibody treatment not only enables macrophage phagocytosis of cancer but also can initiate an antitumor cytotoxic T-cell immune response.
Blood | 2008
Holger Karsunky; Matthew A. Inlay; Thomas Serwold; Deepta Bhattacharya; Irving L. Weissman
Mature blood cells develop from multipotent hematopoietic stem cells through a series of sequential intermediates in which the developmental potential for particular blood lineages is progressively extinguished. We previously reported the identification of one of these developmental intermediates, the common lymphoid progenitor (CLP), which can give rise to T cells, B cells, dendritic cells (DCs), and natural killer cells (NKs), but lacks myeloid and erythroid potential. Recently, several studies have suggested that the T-cell and DC potential of CLP is limited or absent, and/or that CLP contains significant myeloid potential. Here, we show that the originally identified CLP population can be divided into functionally distinct subsets based on the expression of the tyrosine kinase receptor, Flk2. The Flk2(+) subset contains robust in vivo and in vitro T-cell, B-cell, DC, and NK potential, but lacks myeloid potential and, therefore, represents an oligopotent, lymphoid-restricted progenitor. This population of cells does not appear to be B cell-biased and robustly reconstitutes both B and T lineages in vivo, consistent with its being a physiologic progenitor of both of these subsets. Thus, Flk2 expression defines a homogeneous, readily obtainable subset of bone marrow CLP that is completely lymphoid-committed and can differentiate equivalently well into both B and T lineages.
PLOS ONE | 2012
Jun Seita; Debashis Sahoo; Derrick J. Rossi; Deepta Bhattacharya; Thomas Serwold; Matthew A. Inlay; Lauren I. R. Ehrlich; John W. Fathman; David L. Dill; Irving L. Weissman
Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named “Gene Expression Commons” (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.
Blood | 2011
John W. Fathman; Deepta Bhattacharya; Matthew A. Inlay; Jun Seita; Holger Karsunky; Irving L. Weissman
Natural killer (NK) cells develop in the bone marrow and are known to gradually acquire the ability to eliminate infected and malignant cells, yet the cellular stages of NK lineage commitment and maturation are incompletely understood. Using 12-color flow cytometry, we identified a novel NK-committed progenitor (pre-NKP) that is a developmental intermediate between the upstream common lymphoid progenitor and the downstream NKP, previously assumed to represent the first stage of NK lineage commitment. Our analysis also refined the purity of NKPs (rNKP) by 6-fold such that 50% of both pre-NKP and rNKP cells gave rise to NKp46+ NK cells at the single-cell level. On transplantation into unconditioned Rag2-/-Il2rγc-/- recipients, both pre-NKPs and rNKPs generated mature NK cells expressing a repertoire of Ly49 family members that degranulated on stimulation ex vivo. Intrathymic injection of these progenitors, however, yielded no NK cells, suggesting a separate origin of thymic NK cells. Unlike the rNKP, the pre-NKP does not express IL-2Rβ (CD122), yet it is lineage committed toward the NK cell fate, adding support to the theory that IL-15 signaling is not required for NK commitment. Taken together, our data provide a high-resolution in vivo analysis of the earliest steps of NK cell commitment and maturation.
Nature Immunology | 2002
Matthew A. Inlay; Frederick W. Alt; David Baltimore; Yang Xu
The κ intronic (MiEκ) and 3′ (3′Eκ) enhancers are both quantitatively important to, but not essential for, immunoglobulin κ rearrangement. To determine the functional redundancy between these two enhancers, B cells derived from mutant embryonic stem cells—in which both MiEκ and 3′Eκ were deleted on both κ alleles—were analyzed for κ rearrangement. Our findings indicate that these double-mutant B cells have essentially no κ rearrangement but do rearrange and express λ. Therefore, these two κ enhancers share essential roles in activating VκJκ rearrangement. Our findings also indicate that the two κ enhancers play overlapping and distinct roles in the demethylation of κ in B cells.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Craig L. Semerad; Elinore M. Mercer; Matthew A. Inlay; Irving L. Weissman; Cornelis Murre
Hematopoiesis is a tightly controlled process maintained by a small pool of hematopoietic stem cells (HSCs). Here, we demonstrate that the LT-HSC, MPP, premegakaryocytic/erythroid, Pre CFU-E, Pre GM, MkP, and granulocyte-macrophage compartments were all significantly reduced in E2A-deficient bone marrow. Despite a severe depletion of erythroid progenitors, the erythrocyte and megakaryocyte compartments were equivalent in E2A-deficient bone marrow as compared with wild-type mice. E2A-deficient HSCs also failed to efficiently maintain the HSC pool on serial transplantation, and we demonstrate that the E2A proteins regulate cell cycle progression of HSCs by regulating the expression of p21Cip1, p27Kip1, and the thrombopoietin receptor, known regulators of HSC self-renewal activity. Based on these observations, we propose that the E2A proteins promote the developmental progression of the entire spectrum of early hematopoietic progenitors and to suppress an erythroid specific program of gene expression in alternative cell lineages. Last, the data mechanistically link E2A, cell cycle regulators, and the maintenance of the HSC pool in a common pathway.
Journal of Experimental Medicine | 2004
Matthew A. Inlay; Hua Tian; Tongxiang Lin; Yang Xu
The immunoglobulin κ light chain intronic enhancer (iEκ) activates κ rearrangement and is required to maintain the earlier or more efficient rearrangement of κ versus lambda (λ). To understand the mechanism of how iEκ regulates κ rearrangement, we employed homologous recombination to mutate individual functional motifs within iEκ in the endogenous κ locus, including the NF-κB binding site (κB), as well as κE1, κE2, and κE3 E boxes. Analysis of the impacts of these mutations revealed that κE2 and to a lesser extent κE1, but not κE3, were important for activating κ rearrangement. Surprisingly, mutation of the κB site had no apparent effect on κ rearrangement. Comparable to the deletion of the entire iEκ, simultaneous mutation of κE1 and κE2 reduces the efficiency of κ rearrangement much more dramatically than either κE1 or κE2 mutation alone. Because E2A family proteins are the only known factors that bind to these E boxes, these findings provide unambiguous evidence that E2A is a key regulator of κ rearrangement.