Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Mulvey is active.

Publication


Featured researches published by Matthew A. Mulvey.


The EMBO Journal | 2000

Type 1 pilus‐mediated bacterial invasion of bladder epithelial cells

Juan J. Martinez; Matthew A. Mulvey; Joel D. Schilling; Jerome S. Pinkner; Scott J. Hultgren

Most strains of uropathogenic Escherichia coli (UPEC) encode filamentous adhesive organelles called type 1 pili. We have determined that the type 1 pilus adhesin, FimH, mediates not only bacterial adherence, but also invasion of human bladder epithelial cells. In contrast, adherence mediated by another pilus adhesin, PapG, did not initiate bacterial internalization. FimH‐mediated invasion required localized host actin reorganization, phosphoinositide 3‐kinase (PI 3‐kinase) activation and host protein tyrosine phosphorylation, but not activation of Src‐family tyrosine kinases. Phosphorylation of focal adhesin kinase (FAK) at Tyr397 and the formation of complexes between FAK and PI 3‐kinase and between α‐actinin and vinculin were found to correlate with type 1 pilus‐mediated bacterial invasion. Inhibitors that prevented bacterial invasion also blocked the formation of these complexes. Our results demonstrate that UPEC strains are not strictly extracellular pathogens and that the type 1 pilus adhesin FimH can directly trigger host cell signaling cascades that lead to bacterial internalization.


Infection and Immunity | 2001

Establishment of a Persistent Escherichia coli Reservoir during the Acute Phase of a Bladder Infection

Matthew A. Mulvey; Joel D. Schilling; Scott J. Hultgren

ABSTRACT The vast majority of urinary tract infections are caused by strains of uropathogenic Escherichia coli that encode filamentous adhesive organelles called type 1 pili. These structures mediate both bacterial attachment to and invasion of bladder epithelial cells. However, the mechanism by which type 1 pilus-mediated bacterial invasion contributes to the pathogenesis of a urinary tract infection is unknown. Here we show that type 1-piliated uropathogens can invade the superficial epithelial cells that line the lumenal surface of the bladder and subsequently replicate, forming massive foci of intracellular E. coli termed bacterial factories. In response to infection, superficial bladder cells exfoliate and are removed with the flow of urine. To avoid clearance by exfoliation, intracellular uropathogens can reemerge and eventually establish a persistent, quiescent bacterial reservoir within the bladder mucosa that may serve as a source for recurrent acute infections. These observations suggest that urinary tract infections are more chronic and invasive than generally assumed.


Experimental and Molecular Pathology | 2008

Origins and Virulence Mechanisms of Uropathogenic Escherichia coli

Travis J. Wiles; Richard R. Kulesus; Matthew A. Mulvey

Strains of uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections, including both cystitis and pyelonephritis. These bacteria have evolved a multitude of virulence factors and strategies that facilitate bacterial growth and persistence within the adverse settings of the host urinary tract. Expression of adhesive organelles like type 1 and P pili allow UPEC to bind and invade host cells and tissues within the urinary tract while expression of iron-chelating factors (siderophores) enable UPEC to pilfer host iron stores. Deployment of an array of toxins, including hemolysin and cytotoxic necrotizing factor 1, provide UPEC with the means to inflict extensive tissue damage, facilitating bacterial dissemination as well as releasing host nutrients and disabling immune effector cells. These toxins also have the capacity to modulate, in more subtle ways, host signaling pathways affecting myriad processes, including inflammatory responses, host cell survival, and cytoskeletal dynamics. Here, we discuss the mechanisms by which these and other virulence factors promote UPEC survival and growth within the urinary tract. Comparisons are also made between UPEC and other strains of extraintestinal pathogenic E. coli that, although closely related to UPEC, are distinct in their abilities to colonize the host and cause disease.


Cellular Microbiology | 2002

Adhesion and entry of uropathogenic Escherichia coli

Matthew A. Mulvey

To effectively colonize a host animal and cause disease, many bacterial pathogens have evolved the mechanisms needed to invade and persist within host cells and tissues. Recently it was discovered that uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, can invade and replicate within uroepithelial cells. This can provide E. coli with a survival advantage, allowing the microbes to better resist detection and clearance by both innate and adaptive immune defence mechanisms. Adhesive organelles, including type 1, P, and S pili along with Dr adhesins, promote both bacterial attachment to and invasion of host tissues within the urinary tract. Interactions mediated by these adhesins can also stimulate a number of host responses that can directly influence the outcome of a urinary tract infection.


Journal of Immunology | 2001

Bacterial Invasion Augments Epithelial Cytokine Responses to Escherichia coli Through a Lipopolysaccharide-Dependent Mechanism

Joel D. Schilling; Matthew A. Mulvey; Carr D. Vincent; Robin G. Lorenz; Scott J. Hultgren

One mechanism of initiating innate host defenses against uropathogenic Escherichia coli (UPEC) is the production of cytokines by bladder epithelial cells; however, the means by which these cells recognize bacterial pathogens is poorly understood. Type 1 pili, expressed by the majority of UPEC, have been shown to have a critical role in inducing the expression of IL-6 in bladder epithelial cells after exposure to E. coli. In this study, we demonstrate that type 1 pili are not sufficient to activate IL-6 production by bladder epithelial cells. Instead, it was shown that bacterial invasion mediated by type 1 pili augments bladder epithelial responses to E. coli via an LPS-dependent mechanism, leading to the production of IL-6. RNA transcripts for the LPSR Toll-like receptor 4 (TLR4) was detected in cultured bladder epithelial cells. The in vivo role of TLR4 was assessed using C3H/HeJ mice, which express a dominant negative form of TLR4. After infection with UPEC, C3H/HeJ mice have large foci of intracellular bacteria that persist within the bladder epithelium in the absence of any notable inflammatory response. These results indicate that LPS is required for bacterial invasion to enhance host responses to E. coli within the bladder.


PLOS Pathogens | 2007

Integrin-Mediated Host Cell Invasion by Type 1–Piliated Uropathogenic Escherichia coli

Danelle S. Eto; Tiffani A. Jones; Jamie L. Sundsbak; Matthew A. Mulvey

Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into host bladder cells. Using overlay assays with FimH, the purified type 1 pilus adhesin, and mass spectroscopy, we have identified β1 and α3 integrins as key host receptors for UPEC. FimH recognizes N-linked oligosaccharides on these receptors, which are expressed throughout the urothelium. In a bladder cell culture system, β1 and α3 integrin receptors co-localize with invading type 1–piliated bacteria and F-actin. FimH-mediated bacterial invasion of host bladder cells is inhibited by β1 and α3 integrin–specific antibodies and by disruption of the β1 integrin gene in the GD25 fibroblast cell line. Phosphorylation site mutations within the cytoplasmic tail of β1 integrin that alter integrin signaling also variably affect UPEC entry into host cells, by either attenuating or boosting invasion frequencies. Furthermore, focal adhesion and Src family kinases, which propagate integrin-linked signaling and downstream cytoskeletal rearrangements, are shown to be required for FimH-dependent bacterial invasion of target host cells. Cumulatively, these results indicate that β1 and α3 integrins are functionally important receptors for type 1 pili–expressing bacteria within the urinary tract and possibly at other sites within the host.


Antimicrobial Agents and Chemotherapy | 2010

Persistence of Uropathogenic Escherichia coli in the Face of Multiple Antibiotics

Matthew G. Blango; Matthew A. Mulvey

ABSTRACT Numerous antibiotics have proven to be effective at ameliorating the clinical symptoms of urinary tract infections (UTIs), but recurrent and chronic infections continue to plague many individuals. Most UTIs are caused by strains of uropathogenic Escherichia coli (UPEC), which can form both extra- and intracellular biofilm-like communities within the bladder. UPEC also persist inside host urothelial cells in a more quiescent state, sequestered within late endosomal compartments. Here, we tested a panel of 17 different antibiotics, representing seven distinct functional classes, for their effects on the survival of the reference UPEC isolate UTI89 within both biofilms and host bladder urothelial cells. All but one of the tested antibiotics prevented UTI89 growth in broth culture, and most were at least modestly effective against bacteria present within in vitro-grown biofilms. In contrast, only a few of the antibiotics, including nitrofurantoin and the fluoroquinolones ciprofloxacin and sparfloxacin, were able to eliminate intracellular bacteria in bladder cell culture-based assays. However, in a mouse UTI model system in which these antibiotics reached concentrations in the urine specimens that far exceeded minimal inhibitory doses, UPEC reservoirs in bladder tissues were not effectively eradicated. We conclude that the persistence of UPEC within the bladder, regardless of antibiotic treatments, is likely facilitated by a combination of biofilm formation, entry of UPEC into a quiescent or semiquiescent state within host cells, and the stalwart permeability barrier function associated with the bladder urothelium.


Current Opinion in Microbiology | 2000

Bacterial pili: molecular mechanisms of pathogenesis

Frederic G. Sauer; Matthew A. Mulvey; Joel D. Schilling; Juan J. Martinez; Scott J. Hultgren

Gram-negative bacteria produce a diverse array of pili that mediate microbe-microbe and host-pathogen interactions important in the development of disease. The structural and functional characterization of these organelles, particularly their role in triggering signals in both the bacterium and the host upon attachment, has begun to reveal the molecular mechanisms of bacterial diseases.


Journal of Virology | 2000

Inhibition of PKR Activation by the Proline-Rich RNA Binding Domain of the Herpes Simplex Virus Type 1 Us11 Protein

Jeremy Poppers; Matthew A. Mulvey; David Khoo; Ian Mohr

ABSTRACT Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The γ34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the γ34.5 gene specifies a regulatory subunit for protein phosphatase 1α, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. γ34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of γ34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.


Infection and Immunity | 2003

CD14- and toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli

Joel D. Schilling; Steven M. Martin; David A. Hunstad; Kunal P. Patel; Matthew A. Mulvey; Sheryl S. Justice; Robin G. Lorenz; Scott J. Hultgren

ABSTRACT The gram-negative bacterium Escherichia coli is the leading cause of urinary tract infection. The interaction between type 1 piliated E. coli and bladder epithelial cells leads to the rapid production of inflammatory mediators, such as interleukin-6 (IL-6) and IL-8. Conflicting reports have been published in the literature regarding the mechanism by which uroepithelial cells are activated by type 1 piliated E. coli. In particular, the role of lipopolysaccharide (LPS) in these responses has been an area of significant debate. Much of the data arguing against LPS-mediated activation of bladder epithelial cells have come from studies using a renal epithelial cell line as an in vitro model of the urinary epithelium. In this report, we analyzed three bladder epithelial cell lines and demonstrated that they all respond to LPS. Furthermore, the LPS responsivity of the cell lines directly correlated with their ability to generate IL-6 after E. coli stimulation. The LPS receptor complex utilized by the bladder epithelial cell lines included CD14 and Toll-like receptors, and signaling involved the activation of NF-κB and p38 mitogen-activated protein kinase. Also, reverse transcription-PCR analysis demonstrated that bladder epithelial cells express CD14 mRNA. Thus, the molecular machinery utilized by bladder epithelial cells for the recognition of E. coli is very similar to that described for traditional innate immune cells, such as macrophages. In contrast, the A498 renal epithelial cell line did not express CD14, was hyporesponsive to LPS stimulation, and demonstrated poor IL-6 responses to E. coli.

Collaboration


Dive into the Matthew A. Mulvey's collaboration.

Top Co-Authors

Avatar

Scott J. Hultgren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel D. Schilling

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge