Matthew A. Reidenbach
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew A. Reidenbach.
Journal of Physical Oceanography | 2006
Stephen G. Monismith; Amatzia Genin; Matthew A. Reidenbach; Gitai Yahel; Jeffrey R. Koseff
Abstract In this paper hydrographic observations made over a fringing coral reef at the northern end of the Gulf of Aqaba near Eilat, Israel, are discussed. These data show exchange flows driven by the onshore–offshore temperature gradients that develop because shallow regions near shore experience larger temperature changes than do deeper regions offshore when subjected to the same rate of heating or cooling. Under heating conditions, the resulting vertically sheared exchange flow is offshore at the surface and onshore at depth, whereas when cooling dominates, the pattern is reversed. For summer conditions, heating and cooling are both important and a diurnally reversing exchange flow is observed. During winter conditions, heating occupies a relatively small fraction of the day, and only the cooling flow is observed. When scaled by ΔV, the observed profiles of the cross-shore during cooling velocity collapse onto a single curve. The value of ΔV depends on the convective velocity scale uf and the bottom s...
PLOS ONE | 2011
Sally P. Leys; Gitai Yahel; Matthew A. Reidenbach; Verena Tunnicliffe; Uri Shavit; Henry M. Reiswig
Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using “passive” flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.
Physics of Fluids | 2007
Matthew A. Reidenbach; Jeffrey R. Koseff; Stephen G. Monismith
Laboratory experiments obtained fine scale measurements of turbulent shear stresses and rates of mixing and mass transfer over a nonliving bed of the coral, Porites compressa, the dominant species found in Kaneohe Bay, Hawaii. A reef canopy was placed in a recirculating wave-current flume and flow was generated that simulated the flow characteristics of the reef flat of Kaneohe Bay. Turbulence and velocity structure under both unidirectional and wave-dominated currents were measured using a two-dimensional laser Doppler anemometer. Mass transport measurements were made using a planar laser-induced fluorescence technique in which the scalar transport of Rhodamine 6G dye, fluxed from the surfaces of the coral, was quantified. Results show that the action of surface waves, interacting with the structure of the reef, can increase instantaneous shear and mixing up to six times compared to that of unidirectional currents. Maximum shear and mass transport events coincided with flow separation within the wave-cur...
The Journal of Experimental Biology | 2008
Matthew A. Reidenbach; Nicole George; M. A. R. Koehl
SUMMARY Many arthropod olfactory appendages bear arrays of hair-like chemosensory sensillae. Odor molecules in the fluid around the animal must reach the surfaces of those hairs to be sensed. We used the lateral flagellum of the olfactory antennule of the spiny lobster, Panulirus argus, as a system to study how the morphology, orientation, and motion of sensilla-bearing appendages affects the small-scale water flow within the hair array. We tested whether antennule flicking enables lobsters to take discrete odor samples by measuring flow fields through an aesthetasc array on a dynamically scaled physical model of a P. argus antennule. Particle image velocimetry revealed that the magnitude and duration of velocity through the aesthetasc array during the rapid flick downstroke is just enough to allow complete replacement of the fluid entrained within the hair array. The complex zig-zag arrangement of aesthetascs hairs, combined with their offset orientation along the antennule, generates flow velocities that are uniform along the length of the hairs. This increases fluid exchange during the flick and reduces the boundary layer thickness surrounding the hairs. The return stroke occurs at about a quarter the speed of the flick, but the velocity of the fluid between the aesthetascs is approximately 25 times slower. The retained fluid during the return stroke remains virtually unstirred and sufficient time occurs for odor molecules to diffuse to aesthetasc surfaces.
The Journal of Experimental Biology | 2011
Matthew A. Reidenbach; M. A. R. Koehl
SUMMARY Odors are dispersed across aquatic habitats by turbulent water flow as filamentous, intermittent plumes. Many crustaceans sniff (take discrete samples of ambient water and the odors it carries) by flicking their olfactory antennules. We used planar laser-induced fluorescence to investigate how flicking antennules of different morphologies (long antennules of spiny lobsters, Panulirus argus; short antennules of blue crabs, Callinectes sapidus) sample fluctuating odor signals at different positions in a turbulent odor plume in a flume to determine whether the patterns of concentrations captured can provide information about an animals position relative to the odor source. Lobster antennules intercept odors during a greater percentage of flicks and encounter higher peak concentrations than do crab antennules, but because crabs flick at higher frequency, the duration of odor-free gaps between encountered odor pulses is similar. For flicking antennules there were longer time gaps between odor encounters as the downstream distance to the odor source decreases, but shorter gaps along the plume centerline than near the edge. In contrast to the case for antennule flicking, almost all odor-free gaps were <500 ms at all positions in the plume if concentration was measured continuously at the same height as the antennules. Variance in concentration is lower and mean concentration is greater near the substratum, where leg chemosensors continuously sample the plume, than in the water where antennules sniff. Concentrations sampled by legs increase as an animal nears an odor source, but decrease for antennules. Both legs and antennules encounter higher concentrations near the centerline than at the edge of the plume.
Archive | 2012
DeForest Mellon; Matthew A. Reidenbach
Aquatic crustaceans detect odorants in their fluid environment using batteries of microscopic cuticuiar sensilla, termed aesthetascs, which are arrayed along their antennules. Because these structures are tiny they operate at small Reynolds numbers, implying that fluid flow around and within the sensor arrays is laminar. Access of odorants to the surface of the aesthetascs therefore occurs primarily via molecular diffusion, a process that in most crustacean species appears to be enhanced by antennular flicking behavior. Depending upon the density of the sensor array and the size and structure of the individual aesthetascs, flicking may enhance ‘leakiness’ of the flow through the sensor array, thereby decreasing the distance over which odorant-laden fluid must be molecularly diffused to the surface of the individual aesthetascs. Here we review theoretical considerations of the fluid mechanics involved with odorant access to olfactory sensors on the antennules of aquatic crustaceans, including the nature of some remaining unanswered questions, and a brief comparison with the situation in crustaceans that exhibit a terrestrial lifestyle.
PLOS ONE | 2013
Heidi L. Fuchs; Matthew A. Reidenbach
Reef-building species form discrete patches atop soft sediments, and reef restoration often involves depositing solid material as a substrate for larval settlement and growth. There have been few theoretical efforts to optimize the physical characteristics of a restored reef patch to achieve high recruitment rates. The delivery of competent larvae to a reef patch is influenced by larval behavior and by physical habitat characteristics such as substrate roughness, patch length, current speed, and water depth. We used a spatial model, the “hitting-distance” model, to identify habitat characteristics that will jointly maximize both the settlement probability and the density of recruits on an oyster reef (Crassostrea virginica). Modeled larval behaviors were based on laboratory observations and included turbulence-induced diving, turbulence-induced passive sinking, and neutral buoyancy. Profiles of currents and turbulence were based on velocity profiles measured in coastal Virginia over four different substrates: natural oyster reefs, mud, and deposited oyster and whelk shell. Settlement probabilities were higher on larger patches, whereas average settler densities were higher on smaller patches. Larvae settled most successfully and had the smallest optimal patch length when diving over rough substrates in shallow water. Water depth was the greatest source of variability, followed by larval behavior, substrate roughness, and tidal current speed. This result suggests that the best way to maximize settlement on restored reefs is to construct patches of optimal length for the water depth, whereas substrate type is less important than expected. Although physical patch characteristics are easy to measure, uncertainty about larval behavior remains an obstacle for predicting settlement patterns. The mechanistic approach presented here could be combined with a spatially explicit metapopulation model to optimize the arrangement of reef patches in an estuary or region for greater sustainability of restored habitats.
Limnology and Oceanography | 2013
Matthew A. Reidenbach; Peter Berg; Andrew Hume; Jennifer C. R. Hansen; Elizabeth R. Whitman
An intertidal Crassostrea virginica oyster reef was instrumented to quantify processes affecting boundary layer flow, suspended sediment deposition and erosion, and the flux of oxygen to and from the benthos. Velocity and suspended sediment concentrations were measured at opposing sides of the reef and sediment fluxes, due to the combined effects of deposition, resuspension, and suspension feeding by the reef community, were computed from the difference between upstream and downstream suspended sediment concentrations. At the center of the reef, the flux of oxygen to and from the reef was measured using the eddy-correlation technique. While the reef was submerged, oxygen fluxes showed no significant correlation to light, and oxygen uptake increased linearly with velocity, ranging between 100 and 600 mmol m -2 d -1 . Sediment deposition to the reef also increased linearly for velocities between 0 and 10 cm s -1 , up to a maximum of 3500 g m -2 d -1 . For velocities .15 cm s -1 , sediment flux to the reef decreased as sediment resuspension occurred due to bed shear stresses that exceeded the critical threshold for erosion. At velocities .25 cm s -1 , there was net sediment erosion from the reef. Overall, during summertime and nonstorm conditions, mean oxygen uptake was 270 – 40 mmol m -2 d -1 and sediment deposition was 1100 – 390 g m -2 d -1 while the reef was submerged, indicating that oysters have a net positive effect on water clarity and that hydrodynamics exert a strong influence on benthic fluxes of oxygen and sediment to and from the reef.
Chemical Senses | 2013
Joey Nelson; DeForest Mellon; Matthew A. Reidenbach
The flow structure around the lateral antennular flagellum of the freshwater crayfish, Procambarus clarkii, was quantified to determine how antennule morphology and flicking kinematics affect fine-scale flow surrounding their chemosensory sensilla, called aesthetascs. Particle image velocimetry was used to measure velocity and vorticity of flow between aesthetascs of dynamically scaled physical models of P. clarkii antennules. Results revealed that the spacing between aesthetascs and antennule flicking speed induces substantial changes in fluid flow near aesthetascs. The downstroke flicking motion of the antennule occurs at a peak speed of 2.7cm/s. The returnstroke occurs at approximately 70% of this speed, but the fluid velocity between aesthetascs during the returnstroke is approximately 15% compared with the downstroke. The significant decrease in fluid flow near aesthetascs results from the reduced antennule speed and from the coupled interaction of boundary layers of the aesthetascs and antennule during the returnstroke. Odorant-laden fluid captured during the downstroke is retained between the aesthetascs during the slower returnstroke, and sufficient time occurs for odorant molecules to molecularly diffuse to aesthetasc surfaces. In addition, locally generated vorticity was observed near the tip of the aesthetascs, which may induce odorant transport to aesthetasc surfaces and enhance olfactory response times to odors.
Sensors | 2013
Swapnil Pravin; Matthew A. Reidenbach
Crustaceans such as crabs, lobsters and crayfish use dispersing odorant molecules to determine the location of predators, prey, potential mates and habitat. Odorant molecules diffuse in turbulent flows and are sensed by the olfactory organs of these animals, often using a flicking motion of their antennules. These antennules contain both chemosensory and mechanosensory sensilla, which enable them to detect both flow and odorants during a flick. To determine how simultaneous flow and odorant sampling can aid in search behavior, a 3-dimensional numerical model for the near-bed flow environment was created. A stream of odorant concentration was released into the flow creating a turbulent plume, and both temporally and spatially fluctuating velocity and odorant concentration were quantified. The plume characteristics show close resemblance to experimental measurements within a large laboratory flume. Results show that mean odorant concentration and its intermittency, computed as dc/dt, increase towards the plume source, but the temporal and spatial rate of this increase is slow and suggests that long measurement times would be necessary to be useful for chemosensory guidance. Odorant fluxes measured transverse to the mean flow direction, quantified as the product of the instantaneous fluctuation in concentration and velocity, v′c′, do show statistically distinct magnitude and directional information on either side of a plume centerline over integration times of <0.5 s. Aquatic animals typically have neural responses to odorant and velocity fields at rates between 50 and 500 ms, suggesting this simultaneous sampling of both flow and concentration in a turbulent plume can aid in source tracking on timescales relevant to aquatic animals.