Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Romero is active.

Publication


Featured researches published by Matthew A. Romero.


PLOS ONE | 2017

Does external pneumatic compression treatment between bouts of overreaching resistance training sessions exert differential effects on molecular signaling and performance-related variables compared to passive recovery? An exploratory study

Cody T. Haun; Michael D. Roberts; Matthew A. Romero; Shelby C. Osburn; Christopher B. Mobley; Richard G. Anderson; Michael D. Goodlett; David D. Pascoe; Jeffrey S. Martin

Purpose We sought to compare the effects of external pneumatic compression (EPC) and sham when used concurrently with resistance training on performance-related outcomes and molecular measures related to recovery. Methods Twenty (N = 20) resistance-trained male participants (aged 21.6±2.4 years) were randomized to balanced sham or EPC intervention groups. The protocol consisted of 3 consecutive days of heavy, voluminous back squat exercise followed by EPC/sham treatment (Days2-4) and 3 consecutive days of recovery (Days5-7) with EPC/sham only on Days5-6. On Day1 (PRE), and Days3-7, venipuncture, flexibility and pressure-to-pain threshold (PPT) measures were performed. Vastsus lateralis muscle tissue was biopsied at PRE, 1-h post-EPC/sham treatment on Day2 (POST1) and 24-h post-EPC/sham treatment on Day7 (POST2). Isokinetic peak torque was assessed at PRE and POST2. Results Peak isokinetic strength did not change from PRE to POST2 in either group. The PPT was significantly lower on Days3-6 with sham, indicating greater muscle soreness, though this was largely abolished in the EPC group. A significant decrease in flexibility with sham was observed on Day3 (+16.2±4.6% knee joint angle; P<0.01) whereas there was no change with EPC (+2.8±3.8%; P>0.01). Vastus lateralis poly-ubiquitinated proteins significantly increased at the POST2 time point relative to PRE with sham (+66.6±24.6%; P<0.025) and were significantly greater (P<0.025) than those observed with EPC at the same time point (-18.6±8.5%). 4-hydroxynonenal values were significantly lower at POST2 relative to PRE with EPC (-16.2±5.6%; P<0.025) and were significantly lower (P<0.025) than those observed with sham at the same time point (+11.8±5.9%). Conclusion EPC mitigated a reduction in flexibility and PPT that occurred with sham. Moreover, EPC reduced select skeletal muscle oxidative stress and proteolysis markers during recovery from heavy resistance exercise.


Physiological Reports | 2017

Molecular, neuromuscular, and recovery responses to light versus heavy resistance exercise in young men

Cody T. Haun; Petey W. Mumford; Paul A. Roberson; Matthew A. Romero; Christopher B. Mobley; Wesley C. Kephart; Richard G. Anderson; Ryan J. Colquhoun; Tyler W.D. Muddle; Michael J. Luera; Cameron S. Mackey; David D. Pascoe; Kaelin C. Young; Jeffrey S. Martin; Jason M. DeFreitas; Nathaniel D.M. Jenkins; Michael D. Roberts

Recent evidence suggests that resistance training with light or heavy loads to failure results in similar adaptations. Herein, we compared how both training modalities affect the molecular, neuromuscular, and recovery responses following exercise. Resistance‐trained males (mean ± SE: 22 ± 2 years, 84.8 ± 9.0 kg, 1.79 ± 0.06 m; n = 15) performed a crossover design of four sets of leg extensor exercise at 30% (light RE) or 80% (heavy RE) one repetition maximum (1RM) to repetition failure, and heavy RE or light RE 1 week later. Surface electromyography (EMG) was monitored during exercise, and vastus lateralis muscle biopsies were collected at baseline (PRE), 15 min (15mPOST), and 90 min following RE (90mPOST) for examination of molecular targets and fiber typing. Isokinetic dynamometry was also performed before (PRE), immediately after (POST), and 48 h after (48hPOST) exercise. Dependent variables were analyzed using repeated measures ANOVAs and significance was set at P ≤ 0.05. Repetitions completed were greater during light RE (P < 0.01), while EMG amplitude was greater during heavy RE (P ≤ 0.01). POST isokinetic torque was reduced following light versus heavy RE (P < 0.05). Postexercise expression of mRNAs and phosphoproteins associated with muscle hypertrophy were similar between load conditions. Additionally, p70s6k (Thr389) phosphorylation and fast‐twitch fiber proportion exhibited a strong relationship after both light and heavy RE (r > 0.5). While similar mRNA and phosphoprotein responses to both modalities occurred, we posit that heavy RE is a more time‐efficient training method given the differences in total repetitions completed, lower EMG amplitude during light RE, and impaired recovery response after light RE.


Experimental Physiology | 2017

Long‐term dietary quercetin enrichment as a cardioprotective countermeasure in mdx mice

Christopher Ballmann; Thomas S. Denney; Ronald J. Beyers; Tiffany Quindry; Matthew A. Romero; Joshua T. Selsby; John C. Quindry

What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain‐dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn−/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn−/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin‐fed mice.


Scientific Reports | 2018

Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training

Cody T. Haun; C. Brooks Mobley; Christopher G. Vann; Matthew A. Romero; Paul A. Roberson; Petey W. Mumford; Wesley C. Kephart; James C. Healy; Romil K. Patel; Shelby C. Osburn; Darren T. Beck; Robert D. Arnold; Ben Nie; Christopher M. Lockwood; Michael D. Roberts

It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited evidence suggests that whey protein supplementation may increase androgenic signalling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17β-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/β protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen’s d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen’s d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.


Scientific Reports | 2018

Author Correction: Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training

Cody T. Haun; C. Brooks Mobley; Christopher G. Vann; Matthew A. Romero; Paul A. Roberson; Petey W. Mumford; Wesley C. Kephart; James C. Healy; Romil K. Patel; Shelby C. Osburn; Darren T. Beck; Robert D. Arnold; Ben Nie; Christopher M. Lockwood; Michael D. Roberts

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.


PeerJ | 2018

Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training

Michael D. Roberts; Matthew A. Romero; Christopher B. Mobley; Petey W. Mumford; Paul A. Roberson; Cody T. Haun; Christopher G. Vann; Shelby C. Osburn; Hudson H. Holmes; Rory A. Greer; Christopher M. Lockwood; Hailey A. Parry; Andreas N. Kavazis

Background We sought to examine how 12 weeks of resistance exercise training (RET) affected skeletal muscle myofibrillar and sarcoplasmic protein levels along with markers of mitochondrial physiology in high versus low anabolic responders. Methods Untrained college-aged males were classified as anabolic responders in the top 25th percentile (high-response cluster (HI); n = 13, dual x-ray absorptiometry total body muscle mass change (Δ) = +3.1 ± 0.3 kg, Δ vastus lateralis (VL) thickness = +0.59 ± 0.05 cm, Δ muscle fiber cross sectional area = +1,426 ± 253 μm2) and bottom 25th percentile (low-response cluster (LO); n = 12, +1.1 ± 0.2 kg, +0.24 ± 0.07 cm, +5 ± 209 μm2; p < 0.001 for all Δ scores compared to HI). VL muscle prior to (PRE) and following RET (POST) was assayed for myofibrillar and sarcoplasmic protein concentrations, myosin and actin protein content, and markers of mitochondrial volume. Proteins related to myofibril formation, as well as whole lysate PGC1-α protein levels were assessed. Results Main effects of cluster (HI > LO, p = 0.018, Cohen’s d = 0.737) and time (PRE > POST, p = 0.037, Cohen’s d = −0.589) were observed for citrate synthase activity, although no significant interaction existed (LO PRE = 1.35 ± 0.07 mM/min/mg protein, LO POST = 1.12 ± 0.06, HI PRE = 1.53 ± 0.11, HI POST = 1.39 ± 0.10). POST myofibrillar myozenin-1 protein levels were up-regulated in the LO cluster (LO PRE = 0.96 ± 0.13 relative expression units, LO POST = 1.25 ± 0.16, HI PRE = 1.00 ± 0.11, HI POST = 0.85 ± 0.12; within-group LO increase p = 0.025, Cohen’s d = 0.691). No interactions or main effects existed for other assayed markers. Discussion Our data suggest myofibrillar or sarcoplasmic protein concentrations do not differ between HI versus LO anabolic responders prior to or following a 12-week RET program. Greater mitochondrial volume in HI responders may have facilitated greater anabolism, and myofibril myozenin-1 protein levels may represent a biomarker that differentiates anabolic responses to RET. However, mechanistic research validating these hypotheses is needed.


Journal of Applied Physiology | 2018

Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats

Petey W. Mumford; Matthew A. Romero; Xuansong Mao; C. Brooks Mobley; Wesley C. Kephart; Cody T. Haun; Paul A. Roberson; Kaelin C. Young; Jeffrey S. Martin; Joshua F. Yarrow; Darren T. Beck; Michael D. Roberts

We sought to determine whether age-related gastrocnemius muscle mass loss was associated with parallel decrements in androgen receptor (AR) or select Wnt signaling markers. To test this hypothesis, serum-free and total testosterone (TEST) and gastrocnemius AR and Wnt signaling markers were analyzed in male Fischer 344 rats that were 3, 6, 12, 18, and 24 mo (mo) old ( n = 9 per group). Free and total TEST was greatest in 6 mo rats, and AR protein and Wnt5 protein levels linearly declined with aging. There were associations between Wnt5 protein levels and relative gastrocnemius mass ( r = 0.395, P = 0.007) as well as AR and Wnt5 protein levels (r = 0.670, P < 0.001). We next tested the hypothesis that Wnt5 affects muscle fiber size by treating C2C12-derived myotubes with lower (75 ng/ml) and higher (150 ng/ml) concentrations of recombinant Wnt5a protein. Both treatments increased myotube size ( P < 0.05) suggesting this ligand may affect muscle fiber size in vivo. We next tested if Wnt5a protein levels were androgen-modulated by examining 10-mo-old male Fischer 344 rats ( n = 10-11 per group) that were orchiectomized and treated with testosterone-enanthate (TEST-E); trenbolone enanthate (TREN), a nonaromatizable synthetic testosterone analogue; or a vehicle (ORX only) for 4 wk. Interestingly, TEST-E and TREN treatments increased Wnt5a protein in the androgen-sensitive levator ani/bulbocavernosus muscle compared with ORX only ( P < 0.05). To summarize, aromatizable and nonaromatizable androgens increase Wnt5a protein expression in skeletal muscle, age-related decrements in muscle AR may contribute Wnt5a protein decrements, and our in vitro data imply this mechanism may contribute to age-related muscle loss. NEW & NOTEWORTHY Results from this study demonstrate androgen and Wnt5 protein expression decrease with aging, and this may be a mechanism involved with age-related muscle loss.


Frontiers in Physiology | 2018

Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions

Michael D. Roberts; Cody T. Haun; Christopher B. Mobley; Petey W. Mumford; Matthew A. Romero; Paul A. Roberson; Christopher G. Vann; John J. McCarthy

Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics.


Frontiers in Nutrition | 2018

Effects of graded whey supplementation during extreme-volume resistance training

Cody T. Haun; Christopher G. Vann; Christopher B. Mobley; Paul A. Roberson; Shelby C. Osburn; Hudson M. Holmes; Petey M. Mumford; Matthew A. Romero; Kaelin C. Young; Jordan R. Moon; L. Bruce Gladden; Robert D. Arnold; Michael A. Israetel; Annie N. Kirby; Michael D. Roberts

We examined hypertrophic outcomes of weekly graded whey protein dosing (GWP) vs. whey protein (WP) or maltodextrin (MALTO) dosed once daily during 6 weeks of high-volume resistance training (RT). College-aged resistance-trained males (training age = 5 ± 3 years; mean ± SD) performed 6 weeks of RT wherein frequency was 3 d/week and each session involved 2 upper- and 2 lower-body exercises (10 repetitions/set). Volume increased from 10 sets/exercise (week 1) to 32 sets/exercise (week 6), which is the highest volume investigated in this timeframe. Participants were assigned to WP (25 g/d; n = 10), MALTO (30 g/d; n = 10), or GWP (25–150 g/d from weeks 1–6; n = 11), and supplementation occurred throughout training. Dual-energy x-ray absorptiometry (DXA), vastus lateralis (VL), and biceps brachii ultrasounds for muscle thicknesses, and bioelectrical impedance spectroscopy (BIS) were performed prior to training (PRE) and after weeks 3 (MID) and 6 (POST). VL biopsies were also collected for immunohistochemical staining. The GWP group experienced the greatest PRE to POST reduction in DXA fat mass (FM) (−1.00 kg, p < 0.05), and a robust increase in DXA fat- and bone-free mass [termed lean body mass (LBM) throughout] (+2.93 kg, p < 0.05). However, the MALTO group also experienced a PRE to POST increase in DXA LBM (+2.35 kg, p < 0.05), and the GWP and MALTO groups experienced similar PRE to POST increases in type II muscle fiber cross-sectional area (~+300 μm2). When examining the effects of training on LBM increases (ΔLBM) in all participants combined, PRE to MID (+1.34 kg, p < 0.001) and MID to POST (+0.85 kg, p < 0.001) increases were observed. However, when adjusting ΔLBM for extracellular water (ECW) changes, intending to remove the confounder of edema, a significant increase was observed from PRE to MID (+1.18 kg, p < 0.001) but not MID to POST (+0.25 kg; p = 0.131). Based upon DXA data, GWP supplementation may be a viable strategy to improve body composition during high-volume RT. However, large LBM increases observed in the MALTO group preclude us from suggesting that GWP supplementation is clearly superior in facilitating skeletal muscle hypertrophy. With regard to the implemented RT program, ECW-corrected ΔLBM gains were largely dampened, but still positive, in resistance-trained participants when RT exceeded ~20 sets/exercise/wk.


American Journal of Physiology-cell Physiology | 2018

Acute and chronic resistance training downregulates select LINE-1 retrotransposon activity markers in human skeletal muscle

Matthew A. Romero; C. Brooks Mobley; Petey W. Mumford; Paul A. Roberson; Cody T. Haun; Wesley C. Kephart; James C. Healy; Darren T. Beck; Kaelin C. Young; Jeffrey S. Martin; Christopher M. Lockwood; Michael D. Roberts

Herein, we examined if acute or chronic resistance exercise affected markers of skeletal muscle long interspersed nuclear element-1 (LINE-1) retrotransposon activity. In study 1, 10 resistance-trained college-aged men performed three consecutive daily back squat sessions, and vastus lateralis biopsies were taken before (Pre), 2 h following session 1 (Post1), and 3 days following session 3 (Post2). In study 2, 13 untrained college-aged men performed a full-body resistance training program (3 days/wk), and vastus lateralis biopsies were taken before ( week 0) and ~72 h following training cessation ( week 12). In study 1, LINE-1 mRNA decreased 42-48% at Post1 and 2 ( P < 0.05), and reverse transcriptase (RT) activity trended downward at Post2 (-37%, P = 0.067). In study 2, LINE-1 mRNA trended downward at week 12 (-17%, P = 0.056) while LINE-1 promoter methylation increased (+142%, P = 0.041). Open reading frame (ORF)2p protein expression (-24%, P = 0.059) and RT activity (-26%, P = 0.063) also trended downward by week 12. Additionally, changes in RT activity versus satellite cell number were inversely associated ( r = -0.725, P = 0.008). Follow-up in vitro experiments demonstrated that 48-h treatments with lower doses (1 μM and 10 μM) of efavirenz and nevirapine (non-nucleoside RT inhibitors) increased myoblast proliferation ( P < 0.05). However, we observed a paradoxical decrease in myoblast proliferation with higher doses (50 μM) of efavirenz and delavirdine. This is the first report suggesting that resistance exercise downregulates markers of skeletal muscle LINE-1 activity. Given our discordant in vitro findings, future research is needed to thoroughly assess whether LINE-1-mediated RT activity enhances or blunts myoblast, or primary satellite cell, proliferative capacity.

Collaboration


Dive into the Matthew A. Romero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey S. Martin

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaelin C. Young

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge