Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Schenker is active.

Publication


Featured researches published by Matthew A. Schenker.


The Astrophysical Journal | 2013

NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

Brant Robertson; Steven R. Furlanetto; Evan Schneider; S. Charlot; Richard S. Ellis; Daniel P. Stark; Ross J. McLure; James Dunlop; Anton M. Koekemoer; Matthew A. Schenker; Masami Ouchi; Yoshiaki Ono; Emma Curtis-Lake; A. B. Rogers; R. A. A. Bowler; Michele Cirasuolo

Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicate reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen-ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z ~ 6 the population of star-forming galaxies at redshifts z ~ 7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M UV ~ –13 or fainter. Moreover, low levels of star formation extending to redshifts z ~ 15-25, as suggested by the normal UV colors of z ≃ 7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z ≃ 10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.


The Astrophysical Journal | 2013

Keck Spectroscopy of 3 < z < 7 Faint Lyman Break Galaxies: The Importance of Nebular Emission in Understanding the Specific Star Formation Rate and Stellar Mass Density

Daniel P. Stark; Matthew A. Schenker; Richard S. Ellis; Brant Robertson; Ross J. McLure; James Dunlop

The physical properties inferred from the spectral energy distributions (SEDs) of z > 3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times, which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFRs) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broadband fluxes, we investigate the SEDs of 92 spectroscopically confirmed galaxies in the redshift range 3.8 4 than previously thought, supporting up to a 5× increase between z ≃ 2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.


Monthly Notices of the Royal Astronomical Society | 2013

A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging

Ross J. McLure; James Dunlop; R. A. A. Bowler; Emma Curtis-Lake; Matthew A. Schenker; Richard S. Ellis; Brant Robertson; Anton M. Koekemoer; A. B. Rogers; Yoshiaki Ono; Masami Ouchi; S. Charlot; Vivienne Wild; Daniel P. Stark; Steven R. Furlanetto; Michele Cirasuolo; Thomas Targett

We present a new determination of the ultraviolet (UV) galaxy luminosity function (LF) at redshift z ≃ 7 and 8, and a first estimate at z ≃ 9. An accurate determination of the form and evolution of the galaxy LF during this era is of key importance for improving our knowledge of the earliest phases of galaxy evolution and the process of cosmic reionization. Our analysis exploits to the full the new, deepest Wide Field Camera 3/infrared imaging from our Hubble Space Telescope (HST) Ultra-Deep Field 2012 (UDF12) campaign, with dynamic range provided by including a new and consistent analysis of all appropriate, shallower/wider area HST survey data. Our new measurement of the evolving LF at z ≃ 7 to 8 is based on a final catalogue of ≃600 galaxies, and involves a step-wise maximum-likelihood determination based on the photometric redshift probability distribution for each object; this approach makes full use of the 11-band imaging now available in the Hubble Ultra-Deep Field (HUDF), including the new UDF12 F140W data, and the latest Spitzer IRAC imaging. The final result is a determination of the z ≃ 7 LF extending down to UV absolute magnitudes M_1500 = −16.75 (AB mag) and the z ≃ 8 LF down to M_1500 = −17.00. Fitting a Schechter function, we find M*_1500 = −19.90^(+0.23)_(−0.28), log ϕ* = −2.96^(+0.18)_(−0.23) and a faint-end slope α = −1.90^(+0.14)_(−0.15) at z ≃ 7, and M*_1500 = −20.12^(+0.37)_(−0.48), log ϕ* = −3.35^(+0.28)_(−0.47) and α = −2.02^(+0.22)_(-0.23) at z ≃ 8. These results strengthen previous suggestions that the evolution at z > 7 appears more akin to ‘density evolution’ than the apparent ‘luminosity evolution’ seen at z ≃ 5 − 7. We also provide the first meaningful information on the LF at z ≃ 9, explore alternative extrapolations to higher redshifts, and consider the implications for the early evolution of UV luminosity density. Finally, we provide catalogues (including derived z_phot, M_1500 and photometry) for the most robust z ∼ 6.5-11.9 galaxies used in this analysis. We briefly discuss our results in the context of earlier work and the results derived from an independent analysis of the UDF12 data based on colour–colour selection.


The Astrophysical Journal | 2012

KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8

Matthew A. Schenker; Daniel P. Stark; Richard S. Ellis; Brant Robertson; James Dunlop; Ross J. McLure; Jean-Paul Kneib; Johan Richard

Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Lyα) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Low Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5σ sensitivity of <50 A for the rest-frame equivalent width (EW) of Lyα emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Lyα fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Lyα EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more sensitive multi-slit infrared spectrographs, the prospects for improving the statistical validity of this result are promising.


The Astrophysical Journal | 2013

THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

Matthew A. Schenker; Brant Robertson; Richard S. Ellis; Yoshiaki Ono; Ross J. McLure; James Dunlop; Anton M. Koekemoer; R. A. A. Bowler; Masami Ouchi; Emma Curtis-Lake; A. B. Rogers; Evan Schneider; S. Charlot; Daniel P. Stark; Steven R. Furlanetto; Michele Cirasuolo

We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z ≃ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe ~0.65 (0.25) mag fainter in absolute UV magnitude, at z ~ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z ~ 7 and 27 at z ~ 8. Incorporating brighter archival and ground-based samples, we measure the z ≃ 7 UV luminosity function to an absolute magnitude limit of M_(UV) = –17 and find a faint end Schechter slope of ɑ =-1.87^(+0.18)_(-0.17). Using a similar color-color selection at z ≃ 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ≃ 8, ɑ =-1.94^(+0.21)_(-0.24). We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.


The Astrophysical Journal | 2011

The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

Cheng-Yu Kuo; James A. Braatz; J. J. Condon; C. M. V. Impellizzeri; K. Y. Lo; I. Zaw; Matthew A. Schenker; C. Henkel; M. J. Reid; Jenny E. Greene

Observations of H_2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 × 10^(10) and 61 × 10^(10) M_⊙ pc^(–3). For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 × 10^7 and 6.5 × 10^7 M_⊙, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σ_⋆ relation. The M-σ_⋆ relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.


The Astrophysical Journal | 2014

Line-emitting Galaxies beyond a Redshift of 7: An Improved Method for Estimating the Evolving Neutrality of the Intergalactic Medium

Matthew A. Schenker; Richard S. Ellis; Nick Konidaris; Daniel P. Stark

The redshift-dependent fraction of color-selected galaxies revealing Lyman alpha (Lyα) emission, x_(Lyα) has become the most valuable constraint on the evolving neutrality of the early intergalactic medium. However, in addition to resonant scattering by neutral gas, the visibility of Lyα is also dependent on the intrinsic properties of the host galaxy, including its stellar population, dust content, and the nature of outflowing gas. Taking advantage of significant progress we have made in determining the line-emitting properties of z ≃ 4-6 galaxies, we propose an improved method, based on using the measured slopes of the rest-frame ultraviolet continua of galaxies, to interpret the growing body of near-infrared spectra of z > 7 galaxies in order to take into account these host galaxy dependencies. In a first application of our new method, we demonstrate its potential via a new spectroscopic survey of 7 < z < 8 galaxies undertaken with the Keck MOSFIRE spectrograph. Together with earlier published data, our data provide improved estimates of the evolving visibility of Lyα, particularly at redshift z ≃ 8. As a by-product, we also present a promising new line-emitting galaxy candidate, detected at 4.0σ at redshift z = 7.62. We discuss the improving constraints on the evolving neutral fraction over 6 < z < 8 and the implications for cosmic reionization.


Monthly Notices of the Royal Astronomical Society | 2013

The UV continua and inferred stellar populations of galaxies at z ≃ 7–9 revealed by the Hubble Ultra-Deep Field 2012 campaign

James Dunlop; A. B. Rogers; Ross J. McLure; Richard S. Ellis; Brant Robertson; Anton M. Koekemoer; Pratika Dayal; Emma Curtis-Lake; Vivienne Wild; S. Charlot; R. A. A. Bowler; Matthew A. Schenker; Masami Ouchi; Yoshiaki Ono; Michele Cirasuolo; Steven R. Furlanetto; Daniel P. Stark; Thomas Targett; Evan Schneider

We use the new ultra-deep, near-infrared imaging of the Hubble Ultra-Deep Field (HUDF) provided by our UDF12 Hubble Space Telescope (HST) Wide Field Camera 3/IR campaign to explore the rest-frame ultraviolet (UV) properties of galaxies at redshifts z > 6.5. We present the first unbiased measurement of the average UV power-law index, 〈β〉, (fλ ∝ λ^β) for faint galaxies at z ≃ 7, the first meaningful measurements of 〈β〉 at z ≃ 8, and tentative estimates for a new sample of galaxies at z ≃ 9. Utilizing galaxy selection in the new F140W (J_140) imaging to minimize colour bias, and applying both colour and power-law estimators of β, we find 〈β〉 = −2.1 ± 0.2 at z ≃ 7 for galaxies with M_UV ≃ −18. This means that the faintest galaxies uncovered at this epoch have, on average, UV colours no more extreme than those displayed by the bluest star-forming galaxies at low redshift. At z ≃ 8 we find a similar value, 〈β〉 = −1.9 ± 0.3. At z ≃ 9, we find 〈β〉 = −1.8 ± 0.6, essentially unchanged from z ≃ 6 to 7 (albeit highly uncertain). Finally, we show that there is as yet no evidence for a significant intrinsic scatter in β within our new, robust z ≃ 7 galaxy sample. Our results are most easily explained by a population of steadily star-forming galaxies with either ≃ solar metallicity and zero dust, or moderately sub-solar (≃10–20 per cent) metallicity with modest dust obscuration (AV ≃ 0.1–0.2). This latter interpretation is consistent with the predictions of a state-of-the-art galaxy-formation simulation, which also suggests that a significant population of very-low metallicity, dust-free galaxies with β ≃ −2.5 may not emerge until M_UV > −16, a regime likely to remain inaccessible until the James Webb Space Telescope.


Monthly Notices of the Royal Astronomical Society | 2011

A robust sample of galaxies at redshifts 6.0<z<8.7: Stellar populations, star formation rates and stellar masses

Ross J. McLure; James Dunlop; L. de Ravel; Michele Cirasuolo; Richard S. Ellis; Matthew A. Schenker; Brant Robertson; Anton M. Koekemoer; Daniel P. Stark; R. A. A. Bowler

We present the results of a photometric redshift analysis designed to identify z≥ 6 galaxies from the near-infrared Hubble Space Telescope imaging in three deep fields [Hubble Ultra Deep Field (HUDF), HUDF09-2 and Early Release Science] covering a total area of 45 square arcmin. By adopting a rigorous set of criteria for rejecting low-redshift interlopers, and by employing a deconfusion technique to allow the available ultradeep IRAC imaging to be included in the candidate-selection process, we have derived a robust sample of 70 Lyman break galaxies (LBGs) spanning the redshift range 6.0 < z < 8.7. Based on our final sample, we investigate the distribution of ultraviolet (UV) spectral slopes (f_λ∝λ^β), finding a variance-weighted mean value of 〈β〉=−2.05 ± 0.09 which, contrary to some previous results, is not significantly bluer than displayed by lower redshift starburst galaxies. We confirm the correlation between UV luminosity and stellar mass reported elsewhere, but based on fitting galaxy templates featuring a range of star formation histories (SFHs), metallicities and reddening, we find that, at z≥ 6, the range in mass-to-light ratio (M_★/L_(UV)) at a given UV luminosity could span a factor of ≃50. Focusing on a subsample of 21 candidates with IRAC detections at 3.6µm, we find that L^★ LBGs at z≃ 6.5 have a median stellar mass of M_★= (2.1 ± 1.1) × 10^9 M_⊙ (Chabrier initial mass function) and a median specific star formation rate (sSFR) of 1.9 ± 0.8 Gyr^(−1). Using the same subsample, we have investigated the influence of nebular continuum and line emission, finding that for the majority of candidates (16 out of 21), the best-fitting stellar masses are reduced by less than a factor of 2.5. However, galaxy template fits exploring a plausible range of SFHs and metallicities provide no compelling evidence of a clear connection between SFR and stellar mass at these redshifts. Finally, a detailed comparison of our final sample with the results of previous studies suggests that, at faint magnitudes, several high-redshift galaxy samples in the literature are significantly contaminated by low-redshift interlopers.


The Astrophysical Journal | 2013

EVOLUTION OF THE SIZES OF GALAXIES OVER 7 <z< 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

Yoshiaki Ono; Masami Ouchi; Emma Curtis-Lake; Matthew A. Schenker; Richard S. Ellis; Ross J. McLure; James Dunlop; Brant Robertson; Anton M. Koekemoer; R. A. A. Bowler; A. B. Rogers; Evan Schneider; S. Charlot; Daniel P. Stark; Kazuhiro Shimasaku; Steven R. Furlanetto; Michele Cirasuolo

We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ~ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≃ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ~ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≃ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z)^s , we obtain a best-fit index of s = -1.30^(+0.12)_(-0.14) over z ~ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0L^*_(z=3). The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

Collaboration


Dive into the Matthew A. Schenker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Dunlop

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Cirasuolo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. B. Rogers

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge