Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Schiffler is active.

Publication


Featured researches published by Matthew A. Schiffler.


Journal of Medicinal Chemistry | 2016

Discovery and Characterization of 2-Acylaminoimidazole Microsomal Prostaglandin E Synthase-1 Inhibitors.

Matthew A. Schiffler; Stephen Antonysamy; Shobha N. Bhattachar; Kristina M. Campanale; Srinivasan Chandrasekhar; Bradley Condon; Prashant V. Desai; Matthew Fisher; Christopher Groshong; Anita K. Harvey; Michael J. Hickey; Norman E. Hughes; Scott Alan Jones; Euibong Jemes Kim; Steven L. Kuklish; John G. Luz; Bryan H. Norman; Richard E. Rathmell; John R. Rizzo; Thomas W. Seng; Stefan J. Thibodeaux; Timothy Andrew Woods; Jeremy Schulenburg York; Xiao-Peng Yu

As part of a program aimed at the discovery of antinociceptive therapy for inflammatory conditions, a screening hit was found to inhibit microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 17.4 μM. Structural information was used to improve enzyme potency by over 1000-fold. Addition of an appropriate substituent alleviated time-dependent cytochrome P450 3A4 (CYP3A4) inhibition. Further structure-activity relationship (SAR) studies led to 8, which had desirable potency (IC50 = 12 nM in an ex vivo human whole blood (HWB) assay) and absorption, distribution, metabolism, and excretion (ADME) properties. Studies on the formulation of 8 identified 8·H3PO4 as suitable for clinical development. Omission of a lipophilic portion of the compound led to 26, a readily orally bioavailable inhibitor with potency in HWB comparable to celecoxib. Furthermore, 26 was selective for mPGES-1 inhibition versus other mechanisms in the prostanoid pathway. These factors led to the selection of 26 as a second clinical candidate.


Journal of Pharmacology and Experimental Therapeutics | 2016

Identification and Characterization of Novel Microsomal Prostaglandin E Synthase-1 Inhibitors for Analgesia

Srinivasan Chandrasekhar; Anita Harvey; Xiao-Peng Yu; Mark Chambers; J.L. Oskins; C. Lin; Thomas W. Seng; Stefan J. Thibodeaux; Bryan H. Norman; Norman E. Hughes; Matthew A. Schiffler; Matthew Joseph Fisher

Prostaglandin (PG) E2 plays a critical role in eliciting inflammation. Nonsteroidal anti-inflammatory drugs and selective inhibitors of cyclooxygenase, which block PGE2 production, have been used as key agents in treating inflammation and pain associated with arthritis and other conditions. However, these agents have significant side effects such as gastrointestinal bleeding and myocardial infarction, since they also block the production of prostanoids that are critical for other normal physiologic functions. Microsomal prostaglandin E2 synthase-1 is a membrane-bound terminal enzyme in the prostanoid pathway, which acts downstream of cyclooxygenase 2 and is responsible for PGE2 production during inflammation. Thus, inhibition of this enzyme would be expected to block PGE2 production without inhibiting other prostanoids and would provide analgesic efficacy without the side effects. In this report, we describe novel microsomal prostaglandin E2 synthase-1 inhibitors that are potent in blocking PGE2 production and are efficacious in a guinea pig monoiodoacetate model of arthralgia. These molecules may be useful in treating the signs and symptoms associated with arthritis.


ACS Medicinal Chemistry Letters | 2014

Discovery of Cathepsin S Inhibitor LY3000328 for the Treatment of Abdominal Aortic Aneurysm

Prabhakar Kondaji Jadhav; Matthew A. Schiffler; Kostas Gavardinas; Euibong Jemes Kim; Donald P. Matthews; Michael A. Staszak; D. Scott Coffey; Bruce W. Shaw; Kenneth C. Cassidy; Richard A. Brier; Yuke Zhang; Robert M. Christie; William F. Matter; Keyun Qing; Jim D. Durbin; Yong Wang; Gary G. Deng

Cathepsin S (Cat S) plays an important role in many pathological conditions, including abdominal aortic aneurysm (AAA). Inhibition of Cat S may provide a new treatment for AAA. To date, several classes of Cat S inhibitors have been reported, many of which form covalent interactions with the active site Cys25. Herein, we report the discovery of a novel series of noncovalent inhibitors of Cat S through a medium-throughput focused cassette screen and the optimization of the resulting hits. Structure-based optimization efforts led to Cat S inhibitors such as 5 and 9 with greatly improved potency and drug disposition properties. This series of compounds binds to the S2 and S3 subsites without interacting with the active site Cys25. On the basis of in vitro potency, selectivity, and efficacy in a CaCl2-induced AAA in vivo model, 5 (LY3000328) was selected for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2016

Characterization of 3,3-dimethyl substituted N -aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors

Steven L. Kuklish; Stephen Antonysamy; Shobha N. Bhattachar; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Adrian J. Fretland; Karen M. Gooding; Anita Harvey; Norman E. Hughes; John G. Luz; Peter Rudolph Manninen; James McGee; Antonio Navarro; Bryan H. Norman; Katherine Marie Partridge; Steven J. Quimby; Matthew A. Schiffler; Ashley V. Sloan; Alan M. Warshawsky; Jeremy Schulenburg York; Xiao-Peng Yu

Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30μM, and failed to inhibit human mPGES-2 at 62.5μM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of substituted-2,4-dimethyl-(naphthalene-4-carbonyl)amino-benzoic acid as potent and selective EP4 antagonists.

Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Daniel R. Mudra; Xushan Wang; Xiao-Peng Yu; Matthew A. Schiffler; Alan M. Warshawsky

A novel series of EP4 antagonists, based on a quinoline scaffold, has been discovered. Medicinal chemistry efforts to optimize the potency of the initial hit are described. A highly potent compound in a clinically relevant human whole blood assay was identified. Selectivity and pharmacokinetic profiles of this compound are discussed.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery and characterization of a potent and selective EP4 receptor antagonist

Matthew A. Schiffler; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Steven L. Kuklish; Xushan Wang; Alan M. Warshawsky; Jeremy Schulenburg York; Xiao-Peng Yu

EP4 is a prostaglandin E2 receptor that is a target for potential anti-nociceptive therapy. Described herein is a class of amphoteric EP4 antagonists which reverses PGE2-induced suppression of TNFα production in human whole blood. From this class, a potent and highly bioavailable compound (6) has been selected for potential clinical studies. EP4 binding and functional data, selectivity, and pharmacokinetic properties of this compound are included.


Pharmacology Research & Perspectives | 2017

Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists

Srinivasan Chandrasekhar; Xiao-Peng Yu; Anita Harvey; J.L. Oskins; C. Lin; Xushan Wang; Maria-Jesus Blanco; Matthew Joseph Fisher; Steven L. Kuklish; Matthew A. Schiffler; Tatiana Vetman; Alan M. Warshawsky; Jeremy Schulenburg York; Alison M. Bendele; Mark Chambers

Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE2 are transduced through various receptor sub‐types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.


Bioorganic & Medicinal Chemistry Letters | 2017

Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1.

Katherine Marie Partridge; Stephen Antonysamy; Shobha N. Bhattachar; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Adrian J. Fretland; Karen M. Gooding; Anita Harvey; Norman E. Hughes; Steven L. Kuklish; John G. Luz; Peter Rudolph Manninen; James McGee; Daniel R. Mudra; Antonio Navarro; Bryan H. Norman; Steven J. Quimby; Matthew A. Schiffler; Ashley V. Sloan; Alan M. Warshawsky; Jennifer Weller; Jeremy Schulenburg York; Xiao-Peng Yu

We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.


Journal of Medicinal Chemistry | 2018

Identification and Mitigation of Reactive Metabolites of 2-Aminoimidazole-Containing Microsomal Prostaglandin E Synthase-1 Inhibitors Terminated Due to Clinical Drug-Induced Liver Injury

Bryan H. Norman; Matthew Fisher; Matthew A. Schiffler; Steven L. Kuklish; Norman E. Hughes; Boris A. Czeskis; Kenneth C. Cassidy; Trent L. Abraham; Jeffrey J. Alberts; Debra Luffer-Atlas

Two 2-aminoimidazole-based inhibitors, LY3031207 (1) and LY3023703 (2), of the microsomal prostaglandin E synthase-1 (mPGES-1) enzyme were found to cause drug-induced liver injury (DILI) in humans. We studied imidazole ring substitutions to successfully mitigate reactive metabolite (RM) formation. These studies support the conclusion that RM formation may play a role in the observations of DILI and the consideration of 2-aminoimidazoles as structure alerts, due to the high likelihood of bioactivation to generate RMs.


Archive | 2014

Phenoxyethyl piperidine compounds

Matthew A. Schiffler; Jeremy Schulenburg York

Collaboration


Dive into the Matthew A. Schiffler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge