Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Sleeman is active.

Publication


Featured researches published by Matthew A. Sleeman.


Chest | 2010

Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD

Camille Doe; Mona Bafadhel; Salman Siddiqui; Dhananjay Desai; Vijay Mistry; Paul Rugman; Margaret McCormick; Joanne Woods; Richard May; Matthew A. Sleeman; Ian K. Anderson; Christopher E. Brightling

Background: Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain. Methods: We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD. Results: The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04). Conclusions: Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation.


Annals of the Rheumatic Diseases | 2013

Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis

Gerd R. Burmester; Michael E. Weinblatt; Iain B. McInnes; Duncan Porter; Olga Barbarash; Mykola Vatutin; Istvan Szombati; Ehsanollah Esfandiari; Matthew A. Sleeman; Christopher D Kane; Guy Cavet; Bing Wang; A. Godwood; Fabio Magrini

Objectives Mavrilimumab, a human monoclonal antibody targeting the alpha subunit of the granulocyte-macrophage colony-stimulating factor receptor, was evaluated in a phase 2 randomised, double-blind, placebo-controlled study to investigate efficacy and safety in subjects with rheumatoid arthritis (RA). Methods Subcutaneous mavrilimumab (10 mg, 30 mg, 50 mg, or 100 mg) or placebo was administered every other week for 12 weeks in subjects on stable background methotrexate therapy. The primary endpoint was the proportion of subjects achieving a ≥1.2 decrease from baseline in Disease Activity Score (DAS28-CRP) at week 12. Results 55.7% of mavrilimumab-treated subjects met the primary endpoint versus 34.7% placebo (p=0.003) at week 12; for the 10 mg, 30 mg, 50 mg, and 100 mg groups, responses were 41.0% (p=0.543), 61.0% (p=0.011), 53.8% (p=0.071), and 66.7% (p=0.001) respectively. Response rate differences from placebo were observed at week 2 and increased throughout the treatment period. The 100 mg dose demonstrated a significant effect versus placebo on DAS28-CRP<2.6 (23.1% vs 6.7%, p=0.016), all categories of the American College of Rheumatology (ACR) criteria (ACR20: 69.2% vs 40.0%, p=0.005; ACR50: 30.8% vs 12.0%, p=0.021; ACR70: 17.9% vs 4.0%, p=0.030), and the Health Assessment Questionnaire Disability Index (−0.48 vs −0.25, p=0.005). A biomarker-based disease activity score showed a dose-dependent decrease at week 12, indicating suppression of disease-related biological pathways. Adverse events were generally mild or moderate in intensity. No significant hypersensitivity reactions, serious or opportunistic infections, or changes in pulmonary parameters were observed. Conclusions Mavrilimumab induced rapid clinically significant responses in RA subjects, suggesting that inhibiting the mononuclear phagocyte pathway may provide a novel therapeutic approach for RA.


PLOS ONE | 2011

IL-1α/IL-1R1 Expression in Chronic Obstructive Pulmonary Disease and Mechanistic Relevance to Smoke-Induced Neutrophilia in Mice

Fernando Botelho; Carla M. T. Bauer; Donna K. Finch; Jake K. Nikota; Caleb C. J. Zavitz; Ashling Kelly; Kristen N. Lambert; Sian Piper; Martyn L. Foster; James J.P. Goldring; Jadwiga A. Wedzicha; Jennifer Bassett; Jonathan Bramson; Yoichiro Iwakura; Matthew A. Sleeman; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles; Martin R. Stämpfli

Background Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood. Methodology and Principal Findings The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation. Conclusions and Significance This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD.


Frontiers in Pharmacology | 2014

The epithelium in idiopathic pulmonary fibrosis: breaking the barrier.

Ana Camelo; Rebecca Dunmore; Matthew A. Sleeman; Deborah Lee Clarke

Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterized by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix (ECM) in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5B genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic transforming growth factor beta and continuous deposition of ECM stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review, we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation, and myofibroblast activation in the fibrotic lung.


PLOS ONE | 2011

A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis

Sameer R. Oak; Lynne A. Murray; Athula Herath; Matthew A. Sleeman; Ian K. Anderson; Amrita Joshi; Ana Lucia Coelho; Kevin R. Flaherty; Galen B. Toews; Darryl A. Knight; Fernando J. Martinez; Cory M. Hogaboam

Background Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. Methodology and Principal Findings miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. Conclusion These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing.


Annals of the Rheumatic Diseases | 2011

Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study

Gerd R. Burmester; Eugen Feist; Matthew A. Sleeman; Bing Wang; Barbara White; Fabio Magrini

Objective To evaluate the safety, tolerability, pharmacokinetic and pharmacodynamic profiles of mavrilimumab, a human monoclonal antibody targeting the granulocyte-macrophage colony-stimulating factor receptor-α, in subjects with rheumatoid arthritis (RA). Methods A randomised, double-blind, placebo-controlled, dose-escalating phase I study in subjects with RA who received stable methotrexate treatment for ≥3 months before enrolment. Subjects received single intravenous escalating doses of mavrilimumab (0.01–10.0 mg/kg) or placebo. Results 32 subjects were enrolled in this study (1 unblinded subject at 0.01 mg/kg and another at 0.03 mg/kg were followed by five sequential double-blinded cohorts, n=6 each, treated with 0.1, 0.3, 1.0, 3.0 and 10.0 mg/kg, respectively). Adverse events were mild or moderate and were reported with similar frequency across all treatment cohorts. One subject (10.0 mg/kg) experienced moderate face and neck urticaria during infusion that resolved with symptomatic treatment. Systemic clearance of mavrilimumab approached that of endogenous IgG at doses >1.0 mg/kg; pharmacodynamic activity was confirmed in the 1.0 and 3.0 mg/kg cohorts by suppression of suppressor of cytokine signalling 3 mRNA transcripts. In exploratory analyses, reductions of acute phase reactants were observed in subjects with elevated C-reactive protein (>5 mg/l) and erythrocyte sedimentation rate (≥20.0 mm/h) at baseline. No significant change in Disease Activity Score 28-joint assessment (DAS28) was seen in any of the cohorts. In mavrilimumab-treated subjects (n=15) with baseline DAS28 >3.2, mean disease activity (DAS28) was significantly reduced at 4 weeks. Conclusion In this first-in-human study, mavrilimumab showed preliminary evidence of pharmacodynamic activity. Importantly, the safety and pharmacokinetic profiles of mavrilimumab support further clinical studies in RA. Trial registration number: NCT00771420.


Journal of Molecular Biology | 2009

Structure of IL-17A in complex with a potent, fully human neutralizing antibody.

Stefan Gerhardt; W. Mark Abbott; David Hargreaves; Richard A. Pauptit; Rick A. Davies; Maurice Needham; Caroline Langham; Wendy Barker; Azad Aziz; Melanie Snow; Sarah Dawson; Fraser Welsh; Trevor Wilkinson; Tris Vaugan; Gerald Beste; Sarah Bishop; Bojana Popovic; Gareth Rees; Matthew A. Sleeman; Steven J. Tuske; Stephen J. Coales; Yoshitomo Hamuro; Caroline Russell

IL-17A is a pro-inflammatory cytokine produced by the newly identified Th17 subset of T-cells. We have isolated a human monoclonal antibody to IL-17A (CAT-2200) that can potently neutralize the effects of recombinant and native human IL-17A. We determined the crystal structure of IL-17A in complex with the CAT-2200 Fab at 2.6 A resolution in order to provide a definitive characterization of the epitope and paratope regions. Approximately a third of the IL-17A dimer is disordered in this crystal structure. The disorder occurs in both independent copies of the complex in the asymmetric unit and does not appear to be influenced by crystal packing. The complex contains one IL-17A dimer sandwiched between two CAT-2200 Fab fragments. The IL-17A is a disulfide-linked homodimer that is similar in structure to IL-17F, adopting a cystine-knot fold. The structure is not inconsistent with the previous prediction of a receptor binding cavity on IL-17 family members. The epitope recognized by CAT-2200 is shown to involve 12 amino acid residues from the quaternary structure of IL-17A, with each Fab contacting both monomers in the dimer. All complementarity-determining regions (CDRs) in the Fab contribute to a total of 16 amino acid residues in the antibody paratope. In vitro affinity optimization was used to generate CAT-2200 from a parental lead antibody using random mutagenesis of CDR3 loops. This resulted in seven amino acid changes (three in VL-CDR3 and four in VH-CDR3) and gave an approximate 30-fold increase in potency in a cell-based neutralization assay. Two of the seven amino acids form part of the CAT-2200 paratope. The observed interaction site between CAT-2200 and IL-17A is consistent with data from hydrogen/deuterium exchange mass spectrometry and mutagenesis approaches.


American Journal of Respiratory Cell and Molecular Biology | 2014

Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

Lynne A. Murray; Huilan Zhang; Sameer R. Oak; Ana Lucia Coelho; Athula Herath; Kevin R. Flaherty; Joyce S. Lee; Matthew J. Bell; Darryl A. Knight; Fernando J. Martinez; Matthew A. Sleeman; Erica L. Herzog; Cory M. Hogaboam

The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.


Molecular Immunology | 2013

GM-CSF as a therapeutic target in inflammatory diseases.

Annemarie van Nieuwenhuijze; Marije I. Koenders; Debbie Roeleveld; Matthew A. Sleeman; Wim B. van den Berg; Ian P. Wicks

GM-CSF is a well-known haemopoietic growth factor that is used in the clinic to correct neutropaenia, usually as a result of chemotherapy. GM-CSF also has many pro-inflammatory functions and recent data implicates GM-CSF as a key factor in Th17 driven autoimmune inflammatory conditions. In this review we summarize the findings that have led to the development of GM-CSF antagonists for the treatment of autoimmune diseases like rheumatoid arthritis (RA) and discuss some results of recent clinical trials of these agents.


Thorax | 2009

Granulocyte–macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD

S. Saha; Camille Doe; Vijay Mistry; Salman Siddiqui; Debbie Parker; Matthew A. Sleeman; E. S. Cohen; Christopher E. Brightling

Background: Granulocyte–macrophage colony-stimulating factor (GM-CSF) has been implicated as an important mediator in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). However, the expression of GM-CSF and its receptor in airway samples in asthma and COPD across disease severity needs to be further defined. Methods: Sputum GM-CSF was measured in 18 control subjects, 45 subjects with asthma and 47 subjects with COPD. Enumeration of GM-CSF+ cells in the bronchial submucosa and airway smooth muscle bundle was performed in 29 control subjects, 36 subjects with asthma and 10 subjects with COPD. Results: The proportion of subjects with measurable GM-CSF in the sputum was raised in those with moderate (7/14) and severe (11/18) asthma, and in those with COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II (7/16), III (8/17) and IV (7/14) compared with controls (1/18) and those with mild asthma (0/13); p = 0.001. The sputum GM-CSF concentration was correlated with the sputum eosinophilia in subjects with moderate to severe asthma (rs = 0.41; p = 0.018). The median (interquartile range) GM-CSF+ and GM-CSFR+ cells/mm2 of submucosa was increased in severe asthma (1.4 (3.0) and 2.1 (8.4)) compared with those with mild to moderate asthma (0 (2.5) and 1.1 (5)) and healthy controls (0 (0.5) and 0 (1.6)), (p = 0.004 and p = 0.02, respectively). Conclusions: The findings support a potential role for GM-CSF in asthma and COPD and suggest that overexpression of GM-CSF in sputum and the bronchial mucosa is a particular feature of severe asthma.

Collaboration


Dive into the Matthew A. Sleeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge