Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Blaschko is active.

Publication


Featured researches published by Matthew B. Blaschko.


computer vision and pattern recognition | 2008

Beyond sliding windows: Object localization by efficient subwindow search

Christoph H. Lampert; Matthew B. Blaschko; Thomas Hofmann

Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To perform localization, one can take a sliding window approach, but this strongly increases the computational cost, because the classifier function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch-and-bound scheme that allows efficient maximization of a large class of classifier functions over all possible subimages. It converges to a globally optimal solution typically in sublinear time. We show how our method is applicable to different object detection and retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest neighbor classifiers based on the chi2-distance. We demonstrate state-of-the-art performance of the resulting systems on the UIUC Cars dataset, the PASCAL VOC 2006 dataset and in the PASCAL VOC 2007 competition.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009

Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Christoph H. Lampert; Matthew B. Blaschko; Thomas Hofmann

Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the objects location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the lambda2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.


International Journal of Computer Vision | 2010

Unsupervised Object Discovery: A Comparison

Tinne Tuytelaars; Christoph H. Lampert; Matthew B. Blaschko; Wray L. Buntine

The goal of this paper is to evaluate and compare models and methods for learning to recognize basic entities in images in an unsupervised setting. In other words, we want to discover the objects present in the images by analyzing unlabeled data and searching for re-occurring patterns. We experiment with various baseline methods, methods based on latent variable models, as well as spectral clustering methods. The results are presented and compared both on subsets of Caltech256 and MSRC2, data sets that are larger and more challenging and that include more object classes than what has previously been reported in the literature. A rigorous framework for evaluating unsupervised object discovery methods is proposed.


computer vision and pattern recognition | 2008

Correlational spectral clustering

Matthew B. Blaschko; Christoph H. Lampert

We present a new method for spectral clustering with paired data based on kernel canonical correlation analysis, called correlational spectral clustering. Paired data are common in real world data sources, such as images with text captions. Traditional spectral clustering algorithms either assume that data can be represented by a single similarity measure, or by co-occurrence matrices that are then used in biclustering. In contrast, the proposed method uses separate similarity measures for each data representation, and allows for projection of previously unseen data that are only observed in one representation (e.g. images but not text). We show that this algorithm generalizes traditional spectral clustering algorithms and show consistent empirical improvement over spectral clustering on a variety of datasets of images with associated text.


international conference on computer vision | 2011

Learning a category independent object detection cascade

Esa Rahtu; Juho Kannala; Matthew B. Blaschko

Cascades are a popular framework to speed up object detection systems. Here we focus on the first layers of a category independent object detection cascade in which we sample a large number of windows from an objectness prior, and then discriminatively learn to filter these candidate windows by an order of magnitude. We make a number of contributions to cascade design that substantially improve over the state of the art: (i) our novel objectness prior gives much higher recall than competing methods, (ii) we propose objectness features that give high performance with very low computational cost, and (iii) we make use of a structured output ranking approach to learn highly effective, but inexpensive linear feature combinations by directly optimizing cascade performance. Thorough evaluation on the PASCAL VOC data set shows consistent improvement over the current state of the art, and over alternative discriminative learning strategies.


computer vision and pattern recognition | 2014

Understanding Objects in Detail with Fine-Grained Attributes

Andrea Vedaldi; Siddharth Mahendran; Stavros Tsogkas; Subhransu Maji; Ross B. Girshick; Juho Kannala; Esa Rahtu; Iasonas Kokkinos; Matthew B. Blaschko; David Weiss; Ben Taskar; Karen Simonyan; Naomi Saphra; Sammy Mohamed

We study the problem of understanding objects in detail, intended as recognizing a wide array of fine-grained object attributes. To this end, we introduce a dataset of 7, 413 airplanes annotated in detail with parts and their attributes, leveraging images donated by airplane spotters and crowd-sourcing both the design and collection of the detailed annotations. We provide a number of insights that should help researchers interested in designing fine-grained datasets for other basic level categories. We show that the collected data can be used to study the relation between part detection and attribute prediction by diagnosing the performance of classifiers that pool information from different parts of an object. We note that the prediction of certain attributes can benefit substantially from accurate part detection. We also show that, differently from previous results in object detection, employing a large number of part templates can improve detection accuracy at the expenses of detection speed. We finally propose a coarse-to-fine approach to speed up detection through a hierarchical cascade algorithm.


medical image computing and computer-assisted intervention | 2014

Learning fully-connected CRFs for blood vessel segmentation in retinal images.

José Ignacio Orlando; Matthew B. Blaschko

In this work, we present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related abnormalities. Blood vessel segmentation in fundus images has been considered extensively in the literature, but remains a challenge largely due to the desired structures being thin and elongated, a setting that performs particularly poorly using standard segmentation priors such as a Potts model or total variation. In this work, we overcome this difficulty using a discriminatively trained conditional random field model with more expressive potentials. In particular, we employ recent results enabling extremely fast inference in a fully connected model. We find that this rich but computationally efficient model family, combined with principled discriminative training based on a structured output support vector machine yields a fully automated system that achieves results statistically indistinguishable from an expert human annotator. Implementation details are available at http://pages.saclay.inria.fr/ matthew.blaschko/projects/retina/.


european conference on machine learning | 2008

Semi-supervised Laplacian regularization of kernel canonical correlation analysis

Matthew B. Blaschko; Christoph H. Lampert; Arthur Gretton

Kernel canonical correlation analysis (KCCA) is a fundamental technique for dimensionality reduction for paired data. By finding directions that maximize correlation in the space implied by the kernel, KCCA is able to learn representations that are more closely tied to the underlying semantics of the data rather than high variance directions, which are found by PCA but may be the result of noise. However, meaningful directions are not only those that have high correlation to another modality, but also those that capture the manifold structure of the data. We propose a method that is able to simultaneously find highly correlated directions that are also located on high variance directions along the data manifold. This is achieved by the use of semi-supervised Laplacian regularization in the formulation of KCCA, which has the additional benefit of being able to use additional data for which correspondence between the modalities is not known to more robustly estimate the structure of the data manifold. We show experimentally on datasets of images and text that Laplacian regularized training improves the class separation over KCCA with only Tikhonov regularization, while causing no degradation in the correlation between modalities. We propose a model selection criterion based on the Hilbert-Schmidt norm of the semi-supervised Laplacian regularized cross-covariance operator, which can be computed in closed form. Kernel canonical correlation analysis (KCCA) is a dimensionality reduction technique for paired data. By finding directions that maximize correlation, KCCA learns representations that are more closely tied to the underlying semantics of the data rather than noise. However, meaningful directions are not only those that have high correlation to another modality, but also those that capture the manifold structure of the data. We propose a method that is simultaneously able to find highly correlated directions that are also located on high variance directions along the data manifold. This is achieved by the use of semi-supervised Laplacian regularization of KCCA. We show experimentally that Laplacian regularized training improves class separation over KCCA with only Tikhonov regularization, while causing no degradation in the correlation between modalities. We propose a model selection criterion based on the Hilbert-Schmidt norm of the semi-supervised Laplacian regularized cross-covariance operator, which we compute in closed form.


workshop on applications of computer vision | 2005

Automatic In Situ Identification of Plankton

Matthew B. Blaschko; G. Holness; Marwan A. Mattar; Dimitri A. Lisin; Paul E. Utgoff; Allen R. Hanson; Howard Schultz; Edward M. Riseman

Earths oceans are a soup of living micro-organisms known as plankton. As the foundation of the food chain for marine life, plankton are also an integral component of the global carbon cycle which regulates the planets temperature. In this paper, we present a technique for automatic identification of plankton using a variety of features and classification methods including ensembles. The images were obtained in situ by an instrument known as the flow cytometer and microscope (FlowCAM), that detects particles from a stream of water siphoned directly from the ocean. The images are of necessity of limited resolution, making their identification a rather difficult challenge. We expect that upon completion, our system will become a useful tool for marine biologists to assess the health of the worlds oceans.


british machine vision conference | 2009

Object Localization with Global and Local Context Kernels

Matthew B. Blaschko; Christoph H. Lampert

Recent research has shown that the use of contextual cues significantly improves performance in sliding window type localization systems. In this work, we propose a method that incorporates both global and local context information through appropriately defined kernel functions. In particular, we make use of a weighted combination of kernels defined over local spatial regions, as well as a global context kernel. The relative importance of the context contributions is learned automatically, and the resulting discriminant function is of a form such that localization at test time can be solved efficiently using a branch and bound optimization scheme. By specifying context directly with a kernel learning approach, we achieve high localization accuracy with a simple and efficient representation. This is in contrast to other systems that incorporate context for which expensive inference needs to be done at test time. We show experimentally on the PASCAL VOC datasets that the inclusion of context can significantly improve localization performance, provided the relative contributions of context cues are learned appropriately.

Collaboration


Dive into the Matthew B. Blaschko's collaboration.

Top Co-Authors

Avatar

Christoph H. Lampert

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Arthur Gretton

University College London

View shared research outputs
Top Co-Authors

Avatar

Esa Rahtu

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge