Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Bouchard is active.

Publication


Featured researches published by Matthew B. Bouchard.


NeuroImage | 2007

Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation.

Elizabeth M. C. Hillman; Anna Devor; Matthew B. Bouchard; Andrew K. Dunn; G.W. Krauss; Jesse Skoch; Brian J. Bacskai; Anders M. Dale; David A. Boas

The cortical hemodynamic response to somatosensory stimulus is investigated at the level of individual vascular compartments using both depth-resolved optical imaging and in-vivo two-photon microscopy. We utilize a new imaging and spatiotemporal analysis approach that exploits the different characteristic dynamics of responding arteries, arterioles, capillaries and veins to isolate their three-dimensional spatial extent within the cortex. This spatial delineation is validated using vascular casts. Temporal delineation is supported by in-vivo two-photon microscopy of the temporal dynamics and vascular mechanisms of the arteriolar and venous responses. Using these techniques we have been able to characterize the roles of the different vascular compartments in generating and controlling the hemodynamic response to somatosensory stimulus. We find that changes in arteriolar total hemoglobin concentration agree well with arteriolar dilation dynamics, which in turn correspond closely with changes in venous blood flow. For 4-s stimuli, we see only small changes in venous hemoglobin concentration, and do not detect measurable dilation or ballooning in the veins. Instead, we see significant evidence of capillary hyperemia. We compare our findings to historical observations of the composite hemodynamic response from other modalities including functional magnetic resonance imaging. Implications of our results are discussed with respect to mathematical models of cortical hemodynamics, and to current theories on the mechanisms underlying neurovascular coupling. We also conclude that our spatiotemporal analysis approach is capable of isolating and localizing signals from the capillary bed local to neuronal activation, and holds promise for improving the specificity of other hemodynamic imaging modalities.


Optics Express | 2009

Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics

Matthew B. Bouchard; Brenda R. Chen; Sean A. Burgess; Elizabeth M. C. Hillman

Camera-based optical imaging of the exposed brain allows cortical hemodynamic responses to stimulation to be examined. Typical multispectral imaging systems utilize a camera and illumination at several wavelengths, allowing discrimination between changes in oxy- and deoxyhemoglobin concentration. However, most multispectral imaging systems utilize white light sources and mechanical filter wheels to multiplex illumination wavelengths, which are slow and difficult to synchronize at high frame rates. We present a new LED-based system capable of high-resolution multispectral imaging at frame rates exceeding 220 Hz. This improved performance enables simultaneous visualization of hemoglobin oxygenation dynamics within single vessels, changes in vessel diameters, blood flow dynamics from the motion of erythrocytes, and dynamically changing fluorescence.


Journal of the American Heart Association | 2014

A Critical Role for the Vascular Endothelium in Functional Neurovascular Coupling in the Brain

Brenda R. Chen; Mariel G. Kozberg; Matthew B. Bouchard; Mohammed A. Shaik; Elizabeth M. C. Hillman

Background The functional modulation of blood flow in the brain is critical for brain health and is the basis of contrast in functional magnetic resonance imaging. There is evident coupling between increases in neuronal activity and increases in local blood flow; however, many aspects of this neurovascular coupling remain unexplained by current models. Based on the rapid dilation of distant pial arteries during cortical functional hyperemia, we hypothesized that endothelial signaling may play a key role in the long‐range propagation of vasodilation during functional hyperemia in the brain. Although well characterized in the peripheral vasculature, endothelial involvement in functional neurovascular coupling has not been demonstrated. Methods and Results We combined in vivo exposed‐cortex multispectral optical intrinsic signal imaging (MS‐OISI) with a novel in vivo implementation of the light‐dye technique to record the cortical hemodynamic response to somatosensory stimulus in rats before and after spatially selective endothelial disruption. We demonstrate that discrete interruption of endothelial signaling halts propagation of stimulus‐evoked vasodilation in pial arteries, and that wide‐field endothelial disruption in pial arteries significantly attenuates the hemodynamic response to stimulus, particularly the early, rapid increase and peak in hyperemia. Conclusions Involvement of endothelial pathways in functional neurovascular coupling provides new explanations for the spatial and temporal features of the hemodynamic response to stimulus and could explain previous results that were interpreted as evidence for astrocyte‐mediated control of functional hyperemia. Our results unify many aspects of blood flow regulation in the brain and body and prompt new investigation of direct links between systemic cardiovascular disease and neural deficits.


Philosophical Transactions of the Royal Society A | 2011

In vivo optical imaging and dynamic contrast methods for biomedical research

Elizabeth M. C. Hillman; Cyrus B. Amoozegar; Tracy Y. Wang; Addason F. H. McCaslin; Matthew B. Bouchard; James R. Mansfield; Richard M. Levenson

This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE).


Optics Express | 2007

Depth-resolved optical imaging of transmural electrical propagation in perfused heart

Elizabeth M. C. Hillman; Olivier Bernus; Emily Pease; Matthew B. Bouchard; Arkady M. Pertsov

We present a study of the 3-dimensional (3D) propagation of electrical waves in the heart wall using Laminar Optical Tomography (LOT). Optical imaging contrast is provided by a voltage sensitive dye whose fluorescence reports changes in membrane potential. We examined the transmural propagation dynamics of electrical waves in the right ventricle of Langendorf perfused rat hearts, initiated either by endo-cardial or epi-cardial pacing. 3D images were acquired at an effective frame rate of 667Hz. We compare our experimental results to a mathematical model of electrical transmural propagation. We demonstrate that LOT can clearly resolve the direction of propagation of electrical waves within the cardiac wall, and that the dynamics observed agree well with the model of electrical propagation in rat ventricular tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain

Mariel G. Kozberg; Brenda R. Chen; Sarah E. DeLeo; Matthew B. Bouchard; Elizabeth M. C. Hillman

The adult brain exhibits a local increase in cortical blood flow in response to external stimulus. However, broadly varying hemodynamic responses in the brains of newborn and young infants have been reported. Particular controversy exists over whether the “true” neonatal response to stimulation consists of a decrease or an increase in local deoxyhemoglobin, corresponding to a positive (adult-like) or negative blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI), respectively. A major difficulty with previous studies has been the variability in human subjects and measurement paradigms. Here, we present a systematic study in neonatal rats that charts the evolution of the cortical blood flow response during postnatal development using exposed-cortex multispectral optical imaging. We demonstrate that postnatal-day-12–13 rats (equivalent to human newborns) exhibit an “inverted” hemodynamic response (increasing deoxyhemoglobin, negative BOLD) with early signs of oxygen consumption followed by delayed, active constriction of pial arteries. We observed that the hemodynamic response then matures via development of an initial hyperemic (positive BOLD) phase that eventually masks oxygen consumption and balances vasoconstriction toward adulthood. We also observed that neonatal responses are particularly susceptible to stimulus-evoked systemic blood pressure increases, leading to cortical hyperemia that resembles adult positive BOLD responses. We propose that this confound may account for much of the variability in prior studies of neonatal cortical hemodynamics. Our results suggest that functional magnetic resonance imaging studies of infant and child development may be profoundly influenced by the maturing neurovascular and autoregulatory systems of the neonatal brain.


Optics Letters | 2008

Hyperspectral in vivo two-photon microscopy of intrinsic contrast

Andrew J. Radosevich; Matthew B. Bouchard; Sean A. Burgess; Brenda R. Chen; Elizabeth M. C. Hillman

In vivo two-photon imaging of intrinsic contrast can provide valuable information about structural tissue elements such as collagen and elastin and fluorescent metabolites such as nicotinamide adenine dinucleotide. Yet low signal and overlapping emission spectra can make it difficult to identify and delineate these species in vivo. We present a novel approach that combines excitation scanning with spectrally resolved emission two-photon microscopy, allowing distinct structures to be delineated based on their characteristic spectral fingerprints. The amounts of intrinsic fluorophores present in each voxel can also be evaluated. We demonstrate our method using in vivo imaging of nude mouse skin.


Review of Scientific Instruments | 2009

A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast

Baohong Yuan; Sean A. Burgess; Amir K. Iranmahboob; Matthew B. Bouchard; Nicole Lehrer; Clémence Bordier; Elizabeth M. C. Hillman

Laminar optical tomography (LOT) is a new three-dimensional in vivo functional optical imaging technique. Adopting a microscopy-based setup and diffuse optical tomography (DOT) imaging principles, LOT can perform both absorption- and fluorescence-contrast imaging with higher resolution (100-200 microm) than DOT and deeper penetration (2-3 mm) than laser scanning microscopy. These features, as well as a large field of view and acquisition speeds up to 100 frames per second, make LOT suitable for depth-resolved imaging of stratified tissues such as retina, skin, endothelial tissues and the cortex of the brain. In this paper, we provide a detailed description of a new LOT system design capable of imaging both absorption and fluorescence contrast, and present characterization of its performance using phantom studies.


Optics Letters | 2008

Simultaneous multiwavelength laminar optical tomography

Sean A. Burgess; Matthew B. Bouchard; Baohong Yuan; Elizabeth M. C. Hillman

Spatially resolved reflectance measurements can be used to characterize the depth-resolved optical properties of superficial tissues. However, until now, rapid acquisition of multiwavelength data has been hindered by multiplexing problems. We report on a novel multiwavelength laminar optical tomography system capable of acquiring data from multiple source-detector separations at three wavelengths simultaneously. Such data can allow in vivo depth-resolved spectroscopic imaging of absorbers, such as oxy- and deoxyhemoglobin, or of multiple fluorophores, that is unaffected by motion artifacts at frame rates exceeding 100 Hz. The system design and phantom validation studies are presented.


Biomedical Optics Express | 2010

SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition

Matthew B. Bouchard; Elizabeth M. C. Hillman

Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software.

Collaboration


Dive into the Matthew B. Bouchard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baohong Yuan

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge