Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Dickinson is active.

Publication


Featured researches published by Matthew B. Dickinson.


International Journal of Wildland Fire | 2012

Radiant flux density, energy density and fuel consumption in mixed-oak forest surface fires

Robert Kremens; Matthew B. Dickinson; Anthony S. Bova

Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire–atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption and the behaviour of spreading flame fronts. Experiments were conducted in 8 × 8-m outdoor plots using preconditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of ~18.5 m2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density over a range of fuel consumption between 0.15 and 3.25 kg m–2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection and soil heating across a range of fuels.


International Journal of Wildland Fire | 2006

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems

Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova

A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood species: red maple (Acer rubrum), chestnut oak (Quercus prinus), ponderosa pine (Pinus ponderosa), and Douglas-fir (Pseudotsuga menziesii). Results are promising, and indicate that the model predicts stem mortality/survival correctly in ~75-80% of the test cases. A limited sensitivity analysis of model kill depth predictions suggests that the model is more sensitive to required input data for some species than for others, and that the certainty in predicting vascular cambium necrosis decreases as stem diameter decreases.


International Journal of Wildland Fire | 2013

Research and development supporting risk-based wildfire effects prediction for fuels and fire management: status and needs

Kevin Hyde; Matthew B. Dickinson; Gil Bohrer; David E. Calkin; Louisa B. Evers; Julie W. Gilbertson-Day; Tessa Nicolet; Kevin C. Ryan; Christina L. Tague

Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on multiple values-at-risk and balance competing objectives, to support decision making. Providing wildland fire managers with risk-analysis tools requires a broad scientific foundation in fire behaviour and effects prediction as well as high quality computer-based tools and associated databases. We outline a wildfire risk-assessment approach, highlight recent developments in fire effects science and associated research needs, and recommend developing a comprehensive plan for integrated advances in wildfire occurrence, behaviour and effects research leading to improved decision support tools for wildland fire managers. We find that the current state of development in fire behaviour and effects science imposes severe limits on the development of risk-assessment technology. In turn, the development of technology has been largely disconnected from the research enterprise, resulting in a confusing array of ad hoc tools that only partially meet decision-support needs for fuel and fire management. We make the case for defining a common risk-based analytic framework for fire-effects assessment across the range of fire-management activities and developing a research function to support the framework.


International Journal of Wildland Fire | 2016

Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012

Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert Kremens; E. Louise Loudermilk; Joseph J. O'Brien; Benjamin S. Hornsby; Roger D. Ottmar

Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD), from which FRED is integrated, across forested and non-forested RxCADRE 2011 and 2012 burn blocks. Airborne longwave infrared (LWIR) image time series were calibrated to FRFD and integrated to provide FRED. Surface fuel loads measured in clip sample plots were predicted across burn blocks from airborne lidar-derived metrics. Maps of surface fuels and FRED were corrected for occlusion of the radiometric signal by the overstorey canopy in the forested blocks, and FRED maps were further corrected for temporal and spatial undersampling of FRFD. Fuel consumption predicted from FRED derived from both airborne LWIR imagery and various ground validation sensors approached a linear relationship with observed fuel consumption, which matched our expectation. These field, airborne lidar and LWIR image datasets, both before and after calibrations and corrections have been applied, will be made publicly available from a permanent archive for further analysis and to facilitate fire modelling.


International Journal of Wildland Fire | 2016

Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

Matthew B. Dickinson; Andrew T. Hudak; Thomas J. Zajkowski; E. Louise Loudermilk; Wilfrid Schroeder; Luke Ellison; Robert Kremens; William Holley; Otto Martinez; Alexander Paxton; Benjamin C. Bright; Joseph J. O'Brien; Benjamin S. Hornsby; Charles Ichoku; Jason Faulring; Aaron Gerace; David A. Peterson; Joseph Mauceri

Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (>100 ha) burn blocks. For small blocks (n = 6), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n = 3), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.


Canadian Journal of Forest Research | 2010

Effects of wildland fire smoke on a tree-roosting bat: integrating a plume model, field measurements, and mammalian dose–response relationships

Matthew B. Dickinson; J.C. Norris; Anthony Bova; R.L. Kremens; V. Young; Michael J. Lacki

Faunal injury and mortality in wildland fires is a concern for wildlife and fire management although little work has been done on the mechanisms by which exposures cause their effects. In this paper, we use an integral plume model, field measurements, and models of carbon monoxide and heat effects to explore risk to tree-roosting bats during prescribed fires in mixed-oak forests of southeastern Ohio and eastern Kentucky. Tree-roosting bats are of interest primarily because of the need to mitigate risks for the endangered Indiana bat (Myotis sodalis), our focal species. Blood carboxyhemoglobin concentrations predicted from carbon monoxide data supplemented by model output only approached critical levels just above flames in the most intense fires. By contrast, an ear-heating model driven by plume model output suggested that in- jury to the bats thermally thin ears would occur up to heights similar to those of foliage necrosis, an effect for which pre- dictive relationships exist. Risks of heat injury increase with fireline intensity and decrease with both roost height and ambient wind. Although more information is needed on bat arousal from torpor and behavior during fires, strategies for re- ducing the risk of heat injury emerge from consideration of the underlying causal processes.


International Journal of Wildland Fire | 2016

High-resolution infrared thermography for capturing wildland fire behaviour: RxCADRE 2012

Joseph J. O'Brien; E. Louise Loudermilk; Benjamin S. Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our methods for capturing and analysing spatially and temporally explicit long-wave infrared (LWIR) imagery from the RxCADRE (Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment) project and examine the usefulness of these data in investigating fire behaviour and effects. We compare LWIR imagery captured at fine and moderate spatial and temporal resolutions (from 1 cm2 to 1 m2; and from 0.12 to 1 Hz) using both nadir and oblique measurements. We analyse fine-scale spatial heterogeneity of fire radiant power and energy released in several experimental burns. There was concurrence between the measurements, although the oblique view estimates of fire radiative power were consistently higher than the nadir view estimates. The nadir measurements illustrate the significance of fuel characteristics, particularly type and connectivity, in driving spatial variability at fine scales. The nadir and oblique measurements illustrate the usefulness of the data for describing the location and movement of the fire front at discrete moments in time at these fine and moderate resolutions. Spatially and temporally resolved data from these techniques show promise to effectively link the combustion environment with post-fire processes, remote sensing at larger scales and wildland fire modelling efforts.


International Journal of Wildland Fire | 2016

Measurements, datasets and preliminary results from the RxCADRE project-2008, 2011 and 2012

Roger D. Ottmar; J. Kevin Hiers; Bret W. Butler; Craig B. Clements; Matthew B. Dickinson; Andrew T. Hudak; Joseph J. O'Brien; Brian E. Potter; Eric M. Rowell; T. M. Strand; Thomas J. Zajkowski

The lack of independent, quality-assured field data prevents scientists from effectively evaluating and advancing wildland fire models. To rectify this, scientists and technicians convened in the southeastern United States in 2008, 2011 and 2012 to collect wildland fire data in six integrated core science disciplines defined by the fire modelling community. These were fuels, meteorology, fire behaviour, energy, smoke emissions and fire effects. The campaign is known as the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) and sampled 14 forest and 14 non-forest sample units associated within 6 small replicate (,10 ha) and 10 large operational (between 10and1000ha)prescribedfires.Precampaignplanningincludedidentifyinghostingagenciesreceptivetoresearchandthe development of study, logistics and safety plans. Data were quality-assured, reduced, analysed and formatted and placed into a globally accessible repository maintained by the US Forest Service Research Data Archive. The success of the RxCADRE project led to the commencement of a follow-on larger multiagency project called the Fire and Smoke Model Evaluation Experiment (FASMEE). This overview summarises the RxCADRE project and nine companion papers that describe the data collection, analysis and important conclusions from the six science disciplines. Additional keywords: fire behaviour, fire effects, fire model evaluation, fire weather, fuel, remote-piloted aircraft system, smoke.


International Journal of Wildland Fire | 2016

Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012

Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin Hiers

The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological observations were made during the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) field campaign using a suite of meteorological instrumentation to measure both the ambient fire weather conditions and the fire-atmosphere interactions associated with the fires and plumes. Fire-atmosphere interactions are defined as the interactions between presently burning fuels and the atmosphere, in addition to interactions between fuels that will eventually burn in a given fire and the atmosphere (Potter 2012).


International Journal of Wildland Fire | 2016

Evaluation and use of remotely piloted aircraft systems for operations and research – RxCADRE 2012

Thomas J. Zajkowski; Matthew B. Dickinson; J. Kevin Hiers; William Holley; Brett W. Williams; Alexander Paxton; Otto Martinez; Gregory W. Walker

Small remotely piloted aircraft systems (RPAS), also known as unmanned aircraft systems (UAS), are expected to provide important contributions to wildland fire operations and research, but their evaluation and use have been limited. Our objectives were to leverage US Air Force-controlled airspace to (1) deploy RPAS in support of the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) project campaign objectives, including fire progression at multiple scales and (2) assess tactical deployment of multiple RPAS with manned flights in support of incident management. We report here on planning for the missions, including the logistics of integrating RPAS into a complex operations environment, specifications of the aircraft and their measurements, execution of the missions and considerations for future missions. Deployments of RPAS ranged both in time aloft and in size, from the Aeryon Scout quadcopter to the fixed-wing G2R and ScanEagle UAS. Real-time video feeds to incident command staff supported prescribed fire operations and a concept of operations (a planning exercise) was implemented and evaluated for fires in large and small burn blocks. RPAS measurements included visible and long-wave infrared (LWIR) imagery, black carbon, air temperature, relative humidity and three-dimensional wind speed and direction.

Collaboration


Dive into the Matthew B. Dickinson's collaboration.

Top Co-Authors

Avatar

Andrew T. Hudak

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Robert Kremens

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin C. Bright

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Bret W. Butler

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Joseph J. O'Brien

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Zajkowski

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge