Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Renfrow is active.

Publication


Featured researches published by Matthew B. Renfrow.


Journal of The American Society of Nephrology | 2011

The Pathophysiology of IgA Nephropathy

Hitoshi Suzuki; Krzysztof Kiryluk; Jan Novak; Zina Moldoveanu; Andrew B. Herr; Matthew B. Renfrow; Robert J. Wyatt; Francesco Scolari; Jiri Mestecky; Ali G. Gharavi; Bruce A. Julian

Here we discuss recent advances in understanding the biochemical, immunologic, and genetic pathogenesis of IgA nephropathy, the most common primary glomerulonephritis. Current data indicate that at least four processes contribute to development of IgA nephropathy. Patients with IgA nephropathy often have a genetically determined increase in circulating levels of IgA1 with galactose-deficient O-glycans in the hinge-region (Hit 1). This glycosylation aberrancy is, however, not sufficient to induce renal injury. Synthesis and binding of antibodies directed against galactose-deficient IgA1 are required for formation of immune complexes that accumulate in the glomerular mesangium (Hits 2 and 3). These immune complexes activate mesangial cells, inducing proliferation and secretion of extracellular matrix, cytokines, and chemokines, which result in renal injury (Hit 4). Recent genome-wide association studies identify five distinct susceptibility loci--in the MHC on chromosome 6p21, the complement factor H locus on chromosome 1q32, and in a cluster of genes on chromosome 22q22--that potentially influence these processes and contain candidate mediators of disease. The significant variation in prevalence of risk alleles among different populations may also explain some of the sizable geographic variation in disease prevalence. Elucidation of the pathogenesis of IgA nephropathy provides an opportunity to develop disease-specific therapies.


PLOS Pathogens | 2009

Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response

Amit Singh; David K. Crossman; Deborah Mai; Loni Guidry; Martin I. Voskuil; Matthew B. Renfrow; Adrie J. C. Steyn

The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.


Circulation Research | 2008

Atrial Natriuretic Peptide Inhibits Transforming Growth Factor β–Induced Smad Signaling and Myofibroblast Transformation in Mouse Cardiac Fibroblasts

Peng Li; Dajun Wang; Jason Lucas; Suzanne Oparil; Dongqi Xing; Xu Cao; Lea Novak; Matthew B. Renfrow; Yiu Fai Chen

This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)-β1–induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofibroblast transformation of cardiac fibroblasts in response to pressure overload by transverse aortic constriction were exaggerated in ANP-null mice compared with wild-type controls. ANP and cGMP inhibited TGF-β1–induced myofibroblast transformation, proliferation, collagen synthesis, and plasminogen activator inhibitor-1 expression in cardiac fibroblasts isolated from wild-type mice. Following pretreatment with cGMP, TGF-β1 induced phosphorylation of Smad3, but the resultant pSmad3 could not be translocated to the nucleus. pSmad3 that had been phosphorylated with recombinant protein kinase G-1α was analyzed by use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ion trap tandem mass spectrometry. The analysis revealed phosphorylation of Ser309 and Thr388 residues, sites distinct from the C-terminal Ser423/425 residues that are phosphorylated by TGF-β receptor kinase and are critical for the nuclear translocation and down-stream signaling of pSmad3. These results suggest that phosphorylation of Smad3 by protein kinase G is a potential molecular mechanism by which activation of ANP/cGMP/protein kinase G signaling disrupts TGF-β1–induced nuclear translocation of pSmad3 and downstream events, including myofibroblast transformation, proliferation, and expression of extracellular matrix molecules in cardiac fibroblasts. We postulate that this process contributes to the antifibrogenic effects of the natriuretic peptide in heart.


Nature Medicine | 2008

SNO-hemoglobin is not essential for red blood cell-dependent hypoxic vasodilation

T. Scott Isbell; Chiao Wang Sun; Li Chen Wu; Xinjun Teng; Dario A. Vitturi; Billy Glynn Branch; Christopher G. Kevil; Ning Peng; Jm Wyss; Namasivayam Ambalavanan; Lisa M. Schwiebert; Jinxiang Ren; Kevin M. Pawlik; Matthew B. Renfrow; Rakesh P. Patel; Tim M. Townes

The coupling of hemoglobin sensing of physiological oxygen gradients to stimulation of nitric oxide (NO) bioactivity is an established principle of hypoxic blood flow. One mechanism proposed to explain this oxygen-sensing–NO bioactivity linkage postulates an essential role for the conserved Cys93 residue of the hemoglobin β-chain (βCys93) and, specifically, for S-nitrosation of βCys93 to form S-nitrosohemoglobin (SNO-Hb). The SNO-Hb hypothesis, which conceptually links hemoglobin and NO biology, has been debated intensely in recent years. This debate has precluded a consensus on physiological mechanisms and on assessment of the potential role of SNO-Hb in pathology. Here we describe new mouse models that exclusively express either human wild-type hemoglobin or human hemoglobin in which the βCys93 residue is replaced with alanine to assess the role of SNO-Hb in red blood cell–mediated hypoxic vasodilation. Substitution of this residue, precluding hemoglobin S-nitrosation, did not change total red blood cell S-nitrosothiol abundance but did shift S-nitrosothiol distribution to lower molecular weight species, consistent with the loss of SNO-Hb. Loss of βCys93 resulted in no deficits in systemic or pulmonary hemodynamics under basal conditions and, notably, did not affect isolated red blood cell–dependent hypoxic vasodilation. These results demonstrate that SNO-Hb is not essential for the physiologic coupling of erythrocyte deoxygenation with increased NO bioactivity in vivo.


Journal of Biological Chemistry | 2005

Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

Matthew B. Renfrow; Helen J. Cooper; Milan Tomana; Rose Kulhavy; Yoshiyuki Hiki; Kazunori Toma; Mark R. Emmett; Jiri Mestecky; Alan G. Marshall; Jan Novak

In a number of human diseases of chronic inflammatory or autoimmune character, immunoglobulin molecules display aberrant glycosylation patterns of N- or O-linked glycans. In IgA nephropathy, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the Gal deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. To develop experimental approaches to address this question, the synthetic IgA1 hinge region and hinge region from a naturally Gal-deficient IgA1 myeloma protein have been analyzed by 9.4 tesla Fourier transform-ion cyclotron resonance mass spectrometry. Fourier transform-ion cyclotron resonance mass spectrometry offers two complementary fragmentation techniques for analysis of protein glycosylation by tandem mass spectrometry. Infrared multiphoton dissociation of isolated myeloma IgA1 hinge region peptides confirms the amino acid sequence of the de-glycosylated peptide and positively identifies a series of fragments differing in O-glycosylation. To localize sites of O-glycan attachment, synthetic IgA1 HR glycopeptides and HR from a naturally Gal-deficient polymeric IgA1 myeloma protein were analyzed by electron capture dissociation and activated ion-electron capture dissociation. Multiple sites of O-glycan attachment (including sites of Gal deficiency) in myeloma IgA1 HR glycoforms were identified (in all but one case uniquely). These results represent the first direct identification of multiple sites of O-glycan attachment in IgA1 hinge region by mass spectrometry, thereby enabling future characterization at the molecular level of aberrant glycosylation of IgA1 in diseases such as IgA nephropathy.


Molecular & Cellular Proteomics | 2010

Comparison of Methods for Profiling O-Glycosylation HUMAN PROTEOME ORGANISATION HUMAN DISEASE GLYCOMICS/PROTEOME INITIATIVE MULTI-INSTITUTIONAL STUDY OF IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Catherine E. Hayes; Koichi Kato; Nana Kawasaki; Kay Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Elizabeth Palaima; Matthew B. Renfrow

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Journal of Molecular Biology | 2011

Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities

Philip J. Webber; Archer D. Smith; Saurabh Sen; Matthew B. Renfrow; James A. Mobley; Andrew B. West

The leucine-rich repeat kinase 2 (LRRK2) protein has both guanosine triphosphatase (GTPase) and kinase activities, and mutation in either enzymatic domain can cause late-onset Parkinson disease. Nucleotide binding in the GTPase domain may be required for kinase activity, and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation, and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. Parkinson-disease-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase domain mutation resulted in a multiplicative increase (∼7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activities. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occur in an ATP- and autophosphorylation-independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses.


Molecular & Cellular Proteomics | 2009

Comparison of Methods for Profiling O-glycosylation: HUPO Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Koichi Kato; Nana Kawasaki; Kay-Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Matthew B. Renfrow; Michiko Tajiri; Naoyuki Taniguchi

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Journal of Biological Chemistry | 2010

Glycosylation Patterns of HIV-1 gp120 Depend on the Type of Expressing Cells and Affect Antibody Recognition

Milan Raska; Kazuo Takahashi; Lydie Czernekova; Katerina Zachova; Stacy Hall; Zina Moldoveanu; Matt C. Elliott; Landon Wilson; Rhubell Brown; Dagmar Jancova; Stephen Barnes; Jana Vrbkova; Milan Tomana; Phillip D. Smith; Jiri Mestecky; Matthew B. Renfrow; Jan Novak

Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.


Contributions To Nephrology | 2007

IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells.

Jan Novak; Zina Moldoveanu; Matthew B. Renfrow; Takeshi Yanagihara; Hitoshi Suzuki; Milan Raska; Stacy Hall; Rhubell Brown; Wen-Qiang Huang; Alice Goepfert; Mogens Kilian; Knud Poulsen; Milan Tomana; Robert J. Wyatt; Bruce A. Julian; Jiri Mestecky

IgA1 in the circulation and glomerular deposits of patients with IgA nephropathy (IgAN) is aberrantly glycosylated; the hinge-region O-linked glycans are galactose-deficient. The circulating IgA1 of patients with Henoch-Schoenlein purpura nephritis (HSPN) has a similar defect. This aberrancy exposes N-acetylgalactosamine-containing neoepitopes recognized by naturally occurring IgG or IgA1 antibodies resulting in formation of immune complexes. IgA1 contains up to six O-glycosylation sites per heavy chain; it is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We sought to define the aberrant glycosylation of a galactose-deficient IgA1 myeloma protein and analyze the formation of the immune complexes and their biological activities. Supplementation of serum or cord-blood serum with this IgA1 protein resulted in formation of new IgA1 complexes. These complexes stimulated proliferation of cultured human mesangial cells, as did the naturally-occurring IgA1-containing complexes from sera of patients with IgAN and HSPN. Uncomplexed IgA1 did not affect cellular proliferation. Using specific proteases, lectin Western blots, and mass spectrometry, we determined the O-glycosylation sites in the hinge region of the IgA1 myeloma protein and IgA1 proteins from sera of IgAN patients. The IgA1 myeloma protein had galactose-deficient sites at residues 228 and/or 230 and 232. These sites reacted with IgG specific to galactose-deficient IgA1. IgA1 from the IgAN patients had galactose-deficient O-glycans at the same residues. In summary, we identified the neoepitopes on IgA1 responsible for formation of the pathogenic immune complexes. These studies may lead to development of noninvasive diagnostic assays and future disease-specific therapy.

Collaboration


Dive into the Matthew B. Renfrow's collaboration.

Top Co-Authors

Avatar

Jan Novak

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Julian

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jiri Mestecky

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Zina Moldoveanu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hitoshi Suzuki

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar

Stacy Hall

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stephen Barnes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie B. Wall

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge