Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Robers is active.

Publication


Featured researches published by Matthew B. Robers.


ACS Chemical Biology | 2012

Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

Mary P. Hall; James Unch; Brock F. Binkowski; Michael P. Valley; Braeden L. Butler; Monika G. Wood; Paul Otto; Kristopher Zimmerman; Gediminas Vidugiris; Thomas Machleidt; Matthew B. Robers; Hélène A Benink; Christopher T. Eggers; Michael R. Slater; Poncho Meisenheimer; Dieter Klaubert; Frank Fan; Lance P. Encell; Keith V. Wood

Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes.


ACS Chemical Biology | 2015

NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions.

Thomas Machleidt; Carolyn C. Woodroofe; Marie K. Schwinn; Jacqui Mendez; Matthew B. Robers; Kris Zimmerman; Paul Otto; Danette L. Daniels; Thomas A. Kirkland; Keith V. Wood

Dynamic interactions between proteins comprise a key mechanism for temporal control of cellular function and thus hold promise for development of novel drug therapies. It remains technically challenging, however, to quantitatively characterize these interactions within the biologically relevant context of living cells. Although, bioluminescence resonance energy transfer (BRET) has often been used for this purpose, its general applicability has been hindered by limited sensitivity and dynamic range. We have addressed this by combining an extremely bright luciferase (Nanoluc) with a means for tagging intracellular proteins with a long-wavelength fluorophore (HaloTag). The small size (19 kDa), high emission intensity, and relatively narrow spectrum (460 nm peak intensity) make Nanoluc luciferase well suited as an energy donor. By selecting an efficient red-emitting fluorophore (635 nm peak intensity) for attachment onto the HaloTag, an overall spectral separation exceeding 175 nm was achieved. This combination of greater light intensity with improved spectral resolution results in substantially increased detection sensitivity and dynamic range over current BRET technologies. Enhanced performance is demonstrated using several established model systems, as well as the ability to image BRET in individual cells. The capabilities are further exhibited in a novel assay developed for analyzing the interactions of bromodomain proteins with chromatin in living cells.


Nature Methods | 2015

Application of BRET to monitor ligand binding to GPCRs

Leigh A. Stoddart; Elizabeth K. M. Johnstone; Amanda J. Wheal; Joëlle Goulding; Matthew B. Robers; Thomas Machleidt; Keith V. Wood; Stephen J. Hill; Kevin D. G. Pfleger

Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs.


Nature Communications | 2015

Target engagement and drug residence time can be observed in living cells with BRET

Matthew B. Robers; Melanie Dart; Carolyn C. Woodroofe; Chad Zimprich; Thomas A. Kirkland; Thomas Machleidt; Kevin R. Kupcho; Sergiy Levin; James Robert Hartnett; Kristopher Zimmerman; Andrew L. Niles; Rachel Friedman Ohana; Danette L. Daniels; Michael R. Slater; Monika G. Wood; Mei Cong; Yi-Qiang Cheng; Keith V. Wood

The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.


Nature Chemical Biology | 2016

Potent and selective bivalent inhibitors of BET bromodomains

Michael J. Waring; Huawei Chen; Alfred A. Rabow; Graeme Walker; Romel Bobby; Scott Boiko; Rob H. Bradbury; Rowena Callis; Edwin Clark; Ian L. Dale; Danette L. Daniels; Austin Dulak; Liz Flavell; Geoff Holdgate; Thomas A. Jowitt; Alexey Kikhney; Mark S. McAlister; Jacqui Mendez; Derek Ogg; Joe Patel; Philip Petteruti; Graeme R. Robb; Matthew B. Robers; Sakina Saif; Natalie Stratton; Dmitri I. Svergun; Wenxian Wang; David Whittaker; David Wilson; Yi Yao

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Assay and Drug Development Technologies | 2008

Cellular LanthaScreen and β-Lactamase Reporter Assays for High-Throughput Screening of JAK2 Inhibitors

Matthew B. Robers; Thomas Machleidt; Coby B. Carlson; Kun Bi

The Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 5 pathway is responsible for regulation of cellular responses to a number of cytokines and growth factors. In hematopoietic cells, growth factors such as granulocyte macrophage-colony stimulating factor, interleukin-3, and erythropoietin induce the activation of JAK2, which leads to the phosphorylation, dimerization, and transactivation of STAT5 proteins. Dysregulation of JAK2 by activating mutations such as JAK2V617F results in constitutive phosphorylation of STAT5 and has been linked to numerous myeloproliferative disorders such as polycythemia vera. A cellular LanthaScreen (Invitrogen Corp., Carlsbad, CA) time-resolved Förster resonance energy transfer assay for wild-type JAK2 activity was developed. This assay utilized the growth factor-dependent human erythroleukemia TF1 cell line engineered to express a green fluorescent protein-STAT5 fusion protein. Furthermore, a complementary beta-lactamase reporter gene assay was developed to analyze the transcriptional activity of STAT5 downstream of JAK2 in TF1 cells. The same technologies were applied to the development of cellular assays for the interrogation of the disease-relevant JAK2V617F activating mutant. A small molecule inhibitor and Stealth (Invitrogen Corp.) RNA interference oligonucleotides were used to confirm the involvement of JAK2. Our results suggest that these cellular assays and validation tools represent powerful integrated methods for the analysis of physiological and disease-relevant JAK/STAT pathways within the physiological cellular context.


Journal of Biomolecular Screening | 2011

TR-FRET Cellular Assays for Interrogating Posttranslational Modifications of Histone H3

Thomas Machleidt; Matthew B. Robers; Spencer Hermanson; Jeanne M. Dudek; Kun Bi

Posttranslational modifications such as phosphorylation, acetylation, and methylation play important roles in regulating the structures and functions of histones, which in turn regulate gene expression and DNA repair and replication. Histone-modifying enzymes, such as deacetylases, methyltransferases and demethylases, have been pursued as therapeutic targets for various diseases. However, detection of the activities of these enzymes in high-throughput cell-based formats has remained challenging. The authors have developed high-throughput LanthaScreen cellular assays for Histone H3 site-specific modifications. These assays use cells expressing green fluorescence protein–tagged Histone H3 transiently delivered via BacMam and terbium-labeled anti–Histone H3 modification-specific antibodies. Robust time-resolved Förster resonance energy transfer signals were detected for H3 lysine-9 acetylation and dimethylation (H3K9me2), serine-10 phosphorylation, K4 di- and trimethylation, and K27 trimethylation. Consistent with previous reports, hypoxic stress increased K4 methylation levels, and methyltransferase G9a inhibitor UNC-0638 decreased K9me2 levels significantly, with little effects on other modifications. To demonstrate the utility of this assay platform in screening, the K9 acetylation assay was used to profile the Enzo Epigenetics Library. Twelve known HDAC inhibitors were identified as hits and followed up in a dose–response format. In conclusion, this assay platform enables high-throughput cell-based analysis of diverse types of posttranslational modifications of Histone H3.


Molecular Cancer Therapeutics | 2015

Tumor-Suppressor Role of Notch3 in Medullary Thyroid Carcinoma Revealed by Genetic and Pharmacological Induction

Renata Jaskula-Sztul; Jacob Eide; Sara Tesfazghi; Ajitha Dammalapati; April D. Harrison; Xiao-Min Yu; Casi Scheinebeck; Gabrielle N. Winston-McPherson; Kevin R. Kupcho; Matthew B. Robers; Amrit K. Hundal; Weiping Tang; Herbert Chen

Notch1-3 are transmembrane receptors that appear to be absent in medullary thyroid cancer (MTC). Previous research has shown that induction of Notch1 has a tumor-suppressor effect in MTC cell lines, but little is known about the biologic consequences of Notch3 activation for the progression of the disease. We elucidate the role of Notch3 in MTC by genetic (doxycycline-inducible Notch3 intracellular domain) and pharmacologic [AB3, novel histone deacetylase (HDAC) inhibitor] approaches. We find that overexpression of Notch3 leads to the dose-dependent reduction of neuroendocrine tumor markers. In addition, Notch3 activity is required to suppress MTC cell proliferation, and the extent of growth repression depends on the amount of Notch3 protein expressed. Moreover, activation of Notch3 induces apoptosis. The translational significance of this finding is highlighted by our observation that MTC tumors lack active Notch3 protein and reinstitution of this isoform could be a therapeutic strategy to treat patients with MTC. We demonstrate, for the first time, that overexpression of Notch3 in MTC cells can alter malignant neuroendocrine phenotype in both in vitro and in vivo models. In addition, our study provides a strong rationale for using Notch3 as a therapeutic target to provide novel pharmacologic treatment options for MTC. Mol Cancer Ther; 14(2); 499–512. ©2014 AACR.


ACS Chemical Biology | 2015

Deciphering the Cellular Targets of Bioactive Compounds Using a Chloroalkane Capture Tag

Rachel Friedman Ohana; Thomas A. Kirkland; Carolyn C. Woodroofe; Sergiy Levin; H. Tetsuo Uyeda; Paul Otto; Matthew B. Robers; Kris Zimmerman; Lance P. Encell; Keith V. Wood

Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets. In addition, these methods are often not compatible with living cells and therefore cannot be used to verify the pharmacological activity of the tethered compounds. We have developed a novel chloroalkane capture tag that minimally affects compound potency in cultured cells, allowing binding interactions with the targets to occur under conditions relevant to the desired cellular phenotype. Subsequent isolation of the interacting targets is achieved through rapid lysis and capture onto immobilized HaloTag protein. Exchanging the chloroalkane tag for a fluorophore, the putative targets identified by mass spectrometry can be verified for direct binding to the compound through resonance energy transfer. Using the interaction between histone deacetylases (HDACs) and the inhibitor, Vorinostat (SAHA), as a model system, we were able to identify and verify all the known HDAC targets of SAHA as well as two previously undescribed targets, ADO and CPPED1. The discovery of ADO as a target may provide mechanistic insight into a reported connection between SAHA and Huntingtons disease.


Analytical Biochemistry | 2015

A luminescent assay for real-time measurements of receptor endocytosis in living cells

Matthew B. Robers; Brock F. Binkowski; Mei Cong; Chad Zimprich; Cesear Corona; Mark McDougall; George Otto; Christopher T. Eggers; Jim Hartnett; Thomas Machleidt; Frank Fan; Keith V. Wood

Ligand-mediated endocytosis is a key autoregulatory mechanism governing the duration and intensity of signals emanating from cell surface receptors. Due to the mechanistic complexity of endocytosis and its emerging relevance in disease, simple methods capable of tracking this dynamic process in cells have become increasingly desirable. We have developed a bioluminescent reporter technology for real-time analysis of ligand-mediated receptor endocytosis using genetic fusions of NanoLuc luciferase with various G-protein-coupled receptors (GPCRs). This method is compatible with standard microplate formats, which should decrease work flows for high-throughput screens. This article also describes the application of this technology to endocytosis of epidermal growth factor receptor (EGFR), demonstrating potential applicability of the method beyond GPCRs.

Collaboration


Dive into the Matthew B. Robers's collaboration.

Researchain Logo
Decentralizing Knowledge