Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew B. Toomey is active.

Publication


Featured researches published by Matthew B. Toomey.


Current Biology | 2015

Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2

Jennifer M. Enright; Matthew B. Toomey; Shinya Sato; Shelby E. Temple; James R. L. R. Allen; Rina Fujiwara; Valerie M. Kramlinger; Leslie D. Nagy; Kevin M. Johnson; Yi Xiao; Martin J. How; Stephen L. Johnson; Nicholas W. Roberts; Vladimir J. Kefalov; F. Peter Guengerich; Joseph C. Corbo

Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown. Here, we show that a cytochrome P450 family member, Cyp27c1, mediates this switch by converting vitamin A1 (the precursor of 11-cis retinal) into vitamin A2 (the precursor of 11-cis 3,4-didehydroretinal). Knockout of cyp27c1 in zebrafish abrogates production of vitamin A2, eliminating the animals ability to red-shift its photoreceptor spectral sensitivity and reducing its ability to see and respond to near-infrared light. Thus, the expression of a single enzyme mediates dynamic spectral tuning of the entire visual system by controlling the balance of vitamin A1 and A2 in the eye.


Journal of the Royal Society Interface | 2015

A complex carotenoid palette tunes avian colour vision.

Matthew B. Toomey; Aaron M. Collins; Rikard Frederiksen; Cornwall Mc; Jerilyn A. Timlin; Joseph C. Corbo

The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.


Journal of the Royal Society Interface | 2015

Optics of cone photoreceptors in the chicken (Gallus gallus domesticus)

David Wilby; Matthew B. Toomey; Peter Olsson; Rikard Frederiksen; M. Carter Cornwall; Ruth Oulton; Almut Kelber; Joseph C. Corbo; Nicholas W. Roberts

Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones.


eLife | 2016

Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

Matthew B. Toomey; Olle Lind; Rikard Frederiksen; Robert W. Curley; Kenneth M. Riedl; David Wilby; Steven J. Schwartz; Christopher C. Witt; Earl H. Harrison; Nicholas W. Roberts; Misha Vorobyev; Kevin J. McGraw; M. Carter Cornwall; Almut Kelber; Joseph C. Corbo

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001


Proceedings of the National Academy of Sciences of the United States of America | 2017

High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds

Matthew B. Toomey; Ricardo Lopes; Pedro M. Araújo; James D. Johnson; Małgorzata A. Gazda; Sandra Afonso; Paulo G. Mota; Rebecca E. Koch; Geoffrey E. Hill; Joseph C. Corbo; Miguel Carneiro

Significance The yellow, orange, and red colors of birds are produced through the deposition of carotenoid pigments into feathers and skin, and often function as signals in aggressive interactions and mate choice. These colors are hypothesized to communicate information about individual quality because their expression is linked to vital cellular processes through the mechanisms of carotenoid metabolism. To elucidate these mechanisms, we carried out genomic and biochemical analyses of the white recessive canary breed, which carries a heritable defect in carotenoid uptake. We identified a mutation in the SCARB1 gene in this breed that disrupts carotenoid transport function. Our study implicates SCARB1 as a key mediator of carotenoid-based coloration and suggests a link between carotenoid coloration and lipid metabolism. Yellow, orange, and red coloration is a fundamental aspect of avian diversity and serves as an important signal in mate choice and aggressive interactions. This coloration is often produced through the deposition of diet-derived carotenoid pigments, yet the mechanisms of carotenoid uptake and transport are not well-understood. The white recessive breed of the common canary (Serinus canaria), which carries an autosomal recessive mutation that renders its plumage pure white, provides a unique opportunity to investigate mechanisms of carotenoid coloration. We carried out detailed genomic and biochemical analyses comparing the white recessive with yellow and red breeds of canaries. Biochemical analysis revealed that carotenoids are absent or at very low concentrations in feathers and several tissues of white recessive canaries, consistent with a genetic defect in carotenoid uptake. Using a combination of genetic mapping approaches, we show that the white recessive allele is due to a splice donor site mutation in the scavenger receptor B1 (SCARB1; also known as SR-B1) gene. This mutation results in abnormal splicing, with the most abundant transcript lacking exon 4. Through functional assays, we further demonstrate that wild-type SCARB1 promotes cellular uptake of carotenoids but that this function is lost in the predominant mutant isoform in white recessive canaries. Our results indicate that SCARB1 is an essential mediator of the expression of carotenoid-based coloration in birds, and suggest a potential link between visual displays and lipid metabolism.


Nature Communications | 2018

No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird

Rebecca E. Koch; Andreas N. Kavazis; Dennis Hasselquist; Wendy R. Hood; Yufeng Zhang; Matthew B. Toomey; Geoffrey E. Hill

Dietary carotenoids have been proposed to boost immune system and antioxidant functions in vertebrate animals, but studies aimed at testing these physiological functions of carotenoids have often failed to find support. Here we subject yellow canaries (Serinus canaria), which possess high levels of carotenoids in their tissue, and white recessive canaries, which possess a knockdown mutation that results in very low levels of tissue carotenoids, to oxidative and pathogen challenges. Across diverse measures of physiological performance, we detect no differences between carotenoid-rich yellow and carotenoid-deficient white canaries. These results add further challenge to the assumption that carotenoids are directly involved in supporting physiological function in vertebrate animals. While some dietary carotenoids provide indirect benefits as retinoid precursors, our observations suggest that carotenoids themselves may play little to no direct role in key physiological processes in birds.Dietary carotenoids have been proposed to have physiological benefits in addition to contributing to coloration. Here, Koch et al. compare immune and antioxidant functions in yellow, carotenoid-rich vs. white, carotenoid-deficient canaries and find no difference, suggesting a limited physiological role of carotenoids.


The Journal of Comparative Neurology | 2017

Specialized photoreceptor composition in the raptor fovea

Mindaugas Mitkus; Peter Olsson; Matthew B. Toomey; Joseph C. Corbo; Almut Kelber

The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high‐resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus), and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone‐free zone differed between species. Only the common buzzard had a double cone‐free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet‐sensitive cone and green‐sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high‐resolution vision in birds, and that raptors may in fact possess high‐resolution tetrachromatic vision in the central fovea.


FEBS Letters | 2016

Human cytochrome P450 27C1 catalyzes 3,4-desaturation of retinoids.

Valerie M. Kramlinger; Leslie D. Nagy; Rina Fujiwara; Kevin M. Johnson; Thanh T. N. Phan; Yi Xiao; Jennifer M. Enright; Matthew B. Toomey; Joseph C. Corbo; F. P. Guengerich

In humans, a considerable fraction of the retinoid pool in skin is derived from vitamin A2 (all‐trans 3,4‐dehydroretinal). Vitamin A2 may be locally generated by keratinocytes, which can convert vitamin A1 (all‐trans retinol) into vitamin A2 in cell culture. We report that human cytochrome P450 (hP450) 27C1, a previously ‘orphan’ enzyme, can catalyze this reaction. Purified recombinant hP450 27C1 bound and desaturated all‐trans retinol, retinal, and retinoic acid, as well as 11‐cis‐retinal. Although the physiological role of 3,4‐dehydroretinoids in humans is unclear, we have identified hP450 27C1 as an enzyme capable of efficiently mediating their formation.


Royal Society Open Science | 2017

Cambrian origin of the CYP27C1-mediated vitamin A 1 -to-A 2 switch, a key mechanism of vertebrate sensory plasticity

Ala Morshedian; Matthew B. Toomey; Gabriel E. Pollock; Rikard Frederiksen; Jennifer M. Enright; Stephen D. McCormick; M. Carter Cornwall; Gordon L. Fain; Joseph C. Corbo

The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.


Archives of Biochemistry and Biophysics | 2013

Ketocarotenoid circulation, but not retinal carotenoid accumulation, is linked to eye disease status in a wild songbird.

Kevin J. McGraw; Mathieu Giraudeau; Geoffrey E. Hill; Matthew B. Toomey; Molly Staley

Pathogenic or parasitic infections pose numerous physiological challenges to organisms. Carotenoid pigments have often been used as biomarkers of disease state and impact because they integrate multiple aspects of an individuals condition and nutritional and health state. Some diseases are known to influence carotenoid uptake from food (e.g. coccidiosis) and carotenoid use (e.g. as antioxidants/immunostimulants in the body, or for sexually attractive coloration), but there is relatively little information in animals about how different types of carotenoids from different tissue sources may be affected by disease. Here we tracked carotenoid accumulation in two body pools (retina and plasma) as a function of disease state in free-ranging house finches (Haemorhous mexicanus). House finches in eastern North America can contract mycoplasmal conjunctivitis (Mycoplasma gallisepticum, or MG), which can progress from eye swelling to eye closure and death. Previous work showed that systemic immune challenges in house finches lower carotenoid levels in retina, where they act as photoprotectors and visual filters. We assessed carotenoid levels during the molt period, a time of year when finches uniquely metabolize ketocarotenoids (e.g. 3-hydroxy-echinenone) for acquisition of sexually selected red plumage coloration, and found that males infected with MG circulated significantly lower levels of 3-hydroxy-echinenone, but no other plasma carotenoid types, than birds exhibiting no MG symptoms. This result uncovers a key biochemical mechanism for the documented detrimental effect of MG on plumage redness in H. mexicanus. In contrast, we failed to find a relationship between MG infection status and retinal carotenoid concentrations. Thus, we reveal differential effects of an infectious eye disease on carotenoid types and tissue pools in a wild songbird. At least compared to retinal sources (which appear somewhat more temporally stable than other body carotenoid pools, even to diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.

Collaboration


Dive into the Matthew B. Toomey's collaboration.

Top Co-Authors

Avatar

Joseph C. Corbo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Enright

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Xiao

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge