Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew C. Posewitz is active.

Publication


Featured researches published by Matthew C. Posewitz.


Plant Journal | 2008

Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances

Qiang Hu; Milton Sommerfeld; Eric E. Jarvis; Maria L. Ghirardi; Matthew C. Posewitz; Michael Seibert; Al Darzins

Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.


Eukaryotic Cell | 2010

Genetic Engineering of Algae for Enhanced Biofuel Production

Randor Radakovits; Robert E. Jinkerson; Al Darzins; Matthew C. Posewitz

ABSTRACT There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.


Current Opinion in Biotechnology | 2008

Aquatic phototrophs: efficient alternatives to land-based crops for biofuels

G. Charles Dismukes; Damian Carrieri; Nicholas Bennette; Gennady Ananyev; Matthew C. Posewitz

To mitigate some of the potentially deleterious environmental and agricultural consequences associated with current land-based-biofuel feedstocks, we propose the use of biofuels derived from aquatic microbial oxygenic photoautotrophs (AMOPs), more commonly known as cyanobacteria, algae, and diatoms. Herein we review their demonstrated productivity in mass culturing and aspects of their physiology that are particularly attractive for integration into renewable biofuel applications. Compared with terrestrial crops, AMOPs are inherently more efficient solar collectors, use less or no land, can be converted to liquid fuels using simpler technologies than cellulose, and offer secondary uses that fossil fuels do not provide. AMOPs pose a new set of technological challenges if they are to contribute as biofuel feedstocks.


Current Opinion in Biotechnology | 2009

Engineering algae for biohydrogen and biofuel production.

Laura L Beer; Eric S. Boyd; John W. Peters; Matthew C. Posewitz

There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


Nature Communications | 2012

Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana

Randor Radakovits; Robert E. Jinkerson; Susan I. Fuerstenberg; Hongseok Tae; Robert E. Settlage; Jeffrey L. Boore; Matthew C. Posewitz

The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.


Advances in Microbial Physiology | 2006

Maturation of Hydrogenases

August Böck; Paul W. King; Melanie Blokesch; Matthew C. Posewitz

Enzymes possessing the capacity to oxidize molecular hydrogen have developed convergently three class of enzymes leading to: [FeFe]-, [NiFe]-, and [FeS]-cluster-free hydrogenases. They differ in the composition and the structure of the active site metal centre and the sequence of the constituent structural polypeptides but they show one unifying feature, namely the existence of CN and/or CO ligands at the active site Fe. Recent developments in the analysis of the maturation of [FeFe]- and [NiFe]- hydrogenases have revealed a remarkably complex pattern of mostly novel biochemical reactions. Maturation of [FeFe]-hydrogenases requires a minimum of three auxiliary proteins, two of which belong to the class of Radical-SAM enzymes and other to the family of GTPases. They are sufficient to generate active enzyme when their genes are co-expressed with the structural genes in a heterologous host, otherwise deficient in [FeFe]-hydrogenase expression. Maturation of the large subunit of [NiFe]-hydrogenases depends on the activity of at least seven core proteins that catalyse the synthesis of the CN ligand, have a function in the coordination of the active site iron, the insertion of nickel and the proteolytic maturation of the large subunit. Whereas this core maturation machinery is sufficient to generate active hydrogenase in the cytoplasm, like that of hydrogenase 3 from Escherichia coli, additional proteins are involved in the export of the ready-assembled heterodimeric enzyme to the periplasm via the twin-arginine translocation system in the case of membrane-bound hydrogenases. A series of other gene products with intriguing putative functions indicate that the minimal pathway established for E. coli [NiFe]-hydrogenase maturation may possess even higher complexity in other organisms.


Science | 2012

Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants

Dana C. Price; Cheong Xin Chan; Hwan Su Yoon; Eun Chan Yang; Huan Qiu; Andreas P. M. Weber; Rainer Schwacke; Jeferson Gross; Nicolas A. Blouin; Chris E. Lane; Adrian Reyes-Prieto; Dion G. Durnford; Jonathan A.D. Neilson; B. Franz Lang; Gertraud Burger; Jürgen M. Steiner; Wolfgang Löffelhardt; Jonathan E. Meuser; Matthew C. Posewitz; Steven G. Ball; Maria Cecilia Arias; Bernard Henrissat; Pedro M. Coutinho; Stefan A. Rensing; Aikaterini Symeonidi; Harshavardhan Doddapaneni; Beverley R. Green; Veeran D. Rajah; Jeffrey L. Boore; Debashish Bhattacharya

Plastid Origins The glaucophytes, represented by the alga Cyanophora paradoxa, are the putative sister group of red and green algae and plants, which together comprise the founding group of photosynthetic eukaryotes, the Plantae. In their analysis of the genome of C. paradoxa, Price et al. (p. 843; see the Perspective by Spiegel) demonstrate a unique origin for the plastid in the ancestor of this supergroup, which retains much of the ancestral diversity in genes involved in carbohydrate metabolism and fermentation, as well as in the gene content of the mitochondrial genome. Moreover, about 3.3% of nuclear genes in C. paradoxa seem to carry a signal of cyanobacterial ancestry, and key genes involved in starch biosynthesis are derived from energy parasites such as Chlamydiae. Rapid radiation, reticulate evolution via horizontal gene transfer, high rates of gene divergence, loss, and replacement, may have diffused the evolutionary signals within this supergroup, which perhaps explains previous difficulties in resolving its evolutionary history. An ancient algal genome suggests a unique origin of the plastid in the ancestor to plants, algae, and glaucophytes. The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.


Eukaryotic Cell | 2010

Increased Lipid Accumulation in the Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains

Victoria H. Work; Randor Radakovits; Robert E. Jinkerson; Jonathan E. Meuser; Lee G. Elliott; David J. Vinyard; Lieve M.L. Laurens; G. Charles Dismukes; Matthew C. Posewitz

ABSTRACT The accumulation of bioenergy carriers was assessed in two starchless mutants of Chlamydomonas reinhardtii (the sta6 [ADP-glucose pyrophosphorylase] and sta7-10 [isoamylase] mutants), a control strain (CC124), and two complemented strains of the sta7-10 mutant. The results indicate that the genetic blockage of starch synthesis in the sta6 and sta7-10 mutants increases the accumulation of lipids on a cellular basis during nitrogen deprivation relative to that in the CC124 control as determined by conversion to fatty acid methyl esters. However, this increased level of lipid accumulation is energetically insufficient to completely offset the loss of cellular starch that is synthesized by CC124 during nitrogen deprivation. We therefore investigated acetate utilization and O2 evolution to obtain further insights into the physiological adjustments utilized by the two starchless mutants in the absence of starch synthesis. The results demonstrate that both starchless mutants metabolize less acetate and have more severely attenuated levels of photosynthetic O2 evolution than CC124, indicating that a decrease in overall anabolic processes is a significant physiological response in the starchless mutants during nitrogen deprivation. Interestingly, two independent sta7-10:STA7 complemented strains exhibited significantly greater quantities of cellular starch and lipid than CC124 during acclimation to nitrogen deprivation. Moreover, the complemented strains synthesized significant quantities of starch even when cultured in nutrient-replete medium.


Journal of Bacteriology | 2006

Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System

Paul W. King; Matthew C. Posewitz; Maria L. Ghirardi; Michael Seibert

Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.

Collaboration


Dive into the Matthew C. Posewitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria L. Ghirardi

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Arthur R. Grossman

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Paul W. King

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexandra Dubini

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric S. Boyd

Montana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge