Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew D. Daugherty is active.

Publication


Featured researches published by Matthew D. Daugherty.


Journal of Bacteriology | 2003

Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655

Svetlana Gerdes; Michael D. Scholle; John W. Campbell; Gábor Balázsi; E. Ravasz; Matthew D. Daugherty; A. L. Somera; N. C. Kyrpides; I. Anderson; M. S. Gelfand; A. Bhattacharya; Vinayak Kapatral; Mark D'Souza; Mark V. Baev; Y. Grechkin; Faika Mseeh; Michael Fonstein; Ross Overbeek; Albert-László Barabási; Zoltn Oltvai; Andrei L. Osterman

Defining the gene products that play an essential role in an organisms functional repertoire is vital to understanding the system level organization of living cells. We used a genetic footprinting technique for a genome-wide assessment of genes required for robust aerobic growth of Escherichia coli in rich media. We identified 620 genes as essential and 3,126 genes as dispensable for growth under these conditions. Functional context analysis of these data allows individual functional assignments to be refined. Evolutionary context analysis demonstrates a significant tendency of essential E. coli genes to be preserved throughout the bacterial kingdom. Projection of these data over metabolic subsystems reveals topologic modules with essential and evolutionarily preserved enzymes with reduced capacity for error tolerance.


Journal of Bacteriology | 2002

From Genetic Footprinting to Antimicrobial Drug Targets: Examples in Cofactor Biosynthetic Pathways

Svetlana Gerdes; Michael D. Scholle; Mark D'Souza; Axel Bernal; Mark V. Baev; Michael Farrell; Oleg V. Kurnasov; Matthew D. Daugherty; Faika Mseeh; Boris Polanuyer; John W. Campbell; Shubha Anantha; Konstantin Shatalin; Shamim A. K. Chowdhury; Michael Fonstein; Andrei L. Osterman

Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.


Annual Review of Genetics | 2012

Rules of Engagement: Molecular Insights from Host-Virus Arms Races

Matthew D. Daugherty; Harmit S. Malik

Mammalian genes and genomes have been shaped by ancient and ongoing challenges from viruses. These genetic imprints can be identified via evolutionary analyses to reveal fundamental details about when (how old), where (which protein domains), and how (what are the functional consequences of adaptive changes) host-virus arms races alter the proteins involved. Just as extreme amino acid conservation can serve to identify key immutable residues in enzymes, positively selected residues point to molecular recognition interfaces between host and viral proteins that have adapted and counter-adapted in a long series of classical Red Queen conflicts. Common rules for the strategies employed by both hosts and viruses have emerged from case studies of innate immunity genes in primates. We are now poised to use these rules to transition from a retrospective view of host-virus arms races to specific predictions about which host genes face pathogen antagonism and how those genetic conflicts transform host and virus evolution.


Nature Structural & Molecular Biology | 2010

Structural basis for cooperative RNA binding and export complex assembly by HIV Rev

Matthew D. Daugherty; Bella Liu; Alan D. Frankel

HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, to form a highly specific oligomeric ribonucleoprotein (RNP) that binds to the Crm1 host export factor. To understand how protein oligomerization generates cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 2.5-Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped assembly to bind adjacent RNA sites and structurally couple dimerization and RNA recognition. A second protein-protein interface arranges higher-order Rev oligomers to act as an adaptor to the host export machinery, with viral RNA bound to one face and Crm1 to another, the oligomers thereby using small, interconnected modules to physically arrange the RNP for efficient export.


Molecular Cell | 2014

Molecular Basis for Specific Recognition of Bacterial Ligands by NAIP/NLRC4 Inflammasomes

Jeannette L. Tenthorey; Eric M. Kofoed; Matthew D. Daugherty; Harmit S. Malik; Russell E. Vance

NLR (nucleotide-binding domain [NBD]- and leucine-rich repeat [LRR]-containing) proteins mediate innate immune sensing of pathogens in mammals and plants. How NLRs detect their cognate stimuli remains poorly understood. Here, we analyzed ligand recognition by NLR apoptosis inhibitory protein (NAIP) inflammasomes. Mice express multiple highly related NAIP paralogs that recognize distinct bacterial proteins. We analyzed a panel of 43 chimeric NAIPs, allowing us to map the NAIP domain responsible for specific ligand detection. Surprisingly, ligand specificity was mediated not by the LRR domain, but by an internal region encompassing several NBD-associated α-helical domains. Interestingly, we find that the ligand specificity domain has evolved under positive selection in both rodents and primates. We further show that ligand binding is required for the subsequent co-oligomerization of NAIPs with the downstream signaling adaptor NLR family, CARD-containing 4 (NLRC4). These data provide a molecular basis for how NLRs detect ligands and assemble into inflammasomes.


Structure | 2000

Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily.

Tianjun Zhou; Matthew D. Daugherty; Nick V. Grishin; Andrei L. Osterman; Hong Zhang

BACKGROUND Homoserine kinase (HSK) catalyzes an important step in the threonine biosynthesis pathway. It belongs to a large yet unique class of small metabolite kinases, the GHMP kinase superfamily. Members in the GHMP superfamily participate in several essential metabolic pathways, such as amino acid biosynthesis, galactose metabolism, and the mevalonate pathway. RESULTS The crystal structure of HSK and its complex with ADP reveal a novel nucleotide binding fold. The N-terminal domain contains an unusual left-handed betaalphabeta unit, while the C-terminal domain has a central alpha-beta plait fold with an insertion of four helices. The phosphate binding loop in HSK is distinct from the classical P loops found in many ATP/GTP binding proteins. The bound ADP molecule adopts a rare syn conformation and is in the opposite orientation from those bound to the P loop-containing proteins. Inspection of the substrate binding cavity indicates several amino acid residues that are likely to be involved in substrate binding and catalysis. CONCLUSIONS The crystal structure of HSK is the first representative in the GHMP superfamily to have determined structure. It provides insight into the structure and nucleotide binding mechanism of not only the HSK family but also a variety of enzymes in the GHMP superfamily. Such enzymes include galactokinases, mevalonate kinases, phosphomevalonate kinases, mevalonate pyrophosphate decarboxylases, and several proteins of yet unknown functions.


Journal of Bacteriology | 2001

Archaeal Shikimate Kinase, a New Member of the GHMP-Kinase Family

Matthew D. Daugherty; Veronika Vonstein; Ross Overbeek; Andrei L. Osterman

Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.


Molecular Cell | 2008

A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA

Matthew D. Daugherty; Iván D'Orso; Alan D. Frankel

Many ribonucleoprotein (RNP) complexes assemble into large, organized structures in which protein subunits are positioned by interactions with RNA and other proteins. Here we demonstrate that HIV Rev, constrained in size by a limited viral genome, also forms an organized RNP by assembling a homo-oligomer on the Rev response element (RRE) RNA. Rev subunits bind cooperatively to discrete RNA sites using an oligomerization domain and an adaptable protein-RNA interface, forming a complex with 500-fold higher affinity than the tightest single interaction. High-affinity binding correlates strongly with RNA export activity. Rev utilizes different surfaces of its alpha-helical RNA-binding domain to recognize several low-affinity binding sites, including the well-characterized stem IIB site and an additional site in stem IA. We propose that adaptable RNA-binding surfaces allow the Rev oligomer to assemble economically into a discrete, stable RNP and provide a mechanistic role for Rev oligomerization during the HIV life cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes

Joseph J. Carter; Matthew D. Daugherty; Xiaojie Qi; Anjali Bheda-Malge; Gregory C. Wipf; Kristin Robinson; Ann Roman; Harmit S. Malik; Denise A. Galloway

Many viruses use overprinting (alternate reading frame utilization) as a means to increase protein diversity in genomes severely constrained by size. However, the evolutionary steps that facilitate the de novo generation of a novel protein within an ancestral ORF have remained poorly characterized. Here, we describe the identification of an overprinting gene, expressed from an Alternate frame of the Large T Open reading frame (ALTO) in the early region of Merkel cell polyomavirus (MCPyV), the causative agent of most Merkel cell carcinomas. ALTO is expressed during, but not required for, replication of the MCPyV genome. Phylogenetic analysis reveals that ALTO is evolutionarily related to the middle T antigen of murine polyomavirus despite almost no sequence similarity. ALTO/MT arose de novo by overprinting of the second exon of T antigen in the common ancestor of a large clade of mammalian polyomaviruses. Taking advantage of the low evolutionary divergence and diverse sampling of polyomaviruses, we propose evolutionary transitions that likely gave birth to this protein. We suggest that two highly constrained regions of the large T antigen ORF provided a start codon and C-terminal hydrophobic motif necessary for cellular localization of ALTO. These two key features, together with stochastic erasure of intervening stop codons, resulted in a unique protein-coding capacity that has been preserved ever since its birth. Our study not only reveals a previously undefined protein encoded by several polyomaviruses including MCPyV, but also provides insight into de novo protein evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2010

HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes.

Matthew D. Daugherty; David S. Booth; Bhargavi Jayaraman; Yifan Cheng; Alan D. Frankel

RNA is a crucial structural component of many ribonucleoprotein (RNP) complexes, including the ribosome, spliceosome, and signal recognition particle, but the role of RNA in guiding complex formation is only beginning to be explored. In the case of HIV, viral replication requires assembly of an RNP composed of the Rev protein homooligomer and the Rev response element (RRE) RNA to mediate nuclear export of unspliced viral mRNAs. Assembly of the functional Rev-RRE complex proceeds by cooperative oligomerization of Rev on the RRE scaffold and utilizes both protein-protein and protein-RNA interactions to organize complexes with high specificity. The structures of the Rev protein and a peptide-RNA complex are known, but the complete RNP is not, making it unclear to what extent RNA defines the composition and architecture of Rev-RNA complexes. Here we show that the RRE controls the oligomeric state and solubility of Rev and guides its assembly into discrete Rev-RNA complexes. SAXS and EM data were used to derive a structural model of a Rev dimer bound to an essential RRE hairpin and to visualize the complete Rev-RRE RNP, demonstrating that RRE binding drives assembly of Rev homooligomers into asymmetric particles, reminiscent of the role of RNA in organizing more complex RNP machines, such as the ribosome, composed of many different protein subunits. Thus, the RRE is not simply a passive scaffold onto which proteins bind but instead actively defines the protein composition and organization of the RNP.

Collaboration


Dive into the Matthew D. Daugherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harmit S. Malik

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ugo Moens

University of Tromsø

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Polanuyer

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hong Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge