Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew D. Nelson is active.

Publication


Featured researches published by Matthew D. Nelson.


Current Biology | 2014

FMRFamide-like FLP-13 Neuropeptides Promote Quiescence following Heat Stress in Caenorhabditis elegans

Matthew D. Nelson; Kun He Lee; Matthew A. Churgin; Andrew J. Hill; Cheryl Van Buskirk; Christopher Fang-Yen; David M. Raizen

Among the most important decisions an animal makes is whether to engage in active movement and feeding behavior or to become quiescent. The molecular signaling mechanisms underlying this decision remain largely unknown. The nematode Caenorhabditis elegans displays sleep-like quiescence following exposures that result in cellular stress. The neurosecretory ALA neuron is required for this stress-induced recovery quiescence, but the mechanisms by which ALA induces quiescence have been unknown. We report here that quiescence induced by heat stress requires ALA depolarization and release of FMRFamide-like neuropeptides encoded by the flp-13 gene. Optogenetic activation of ALA reduces feeding and locomotion in a FLP-13-dependent manner. Overexpression of flp-13 is sufficient to induce quiescent behavior during normally active periods. We have here identified a major biological role for FMRFamide-like neuropeptides in nematodes, and we suggest that they may function in a similar capacity in other organisms.


Methods of Molecular Biology | 2012

Overlap extension PCR: an efficient method for transgene construction.

Matthew D. Nelson; David H. A. Fitch

Combining genes or regulatory elements to make hybrid genes is a widely used methodology throughout the biological sciences. Here, we describe an optimized approach for hybrid gene construction called overlap extension PCR. In this method, the polymerase chain reaction (PCR) is employed for efficient and reliable construction of hybrid genes. A PCR-based approach does not rely on available restriction sites or other specific sequences, an advantage over more conventional cloning or recombineering methods. With the use of high-fidelity DNA polymerase, this method can be used for making even very large constructs (>20 kb) with minimal unwanted mutations. Finally, overlap extension-PCR can be used as a means for site-directed mutagenesis, introducing desired mutations to the final hybrid gene.


Nature Communications | 2013

The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans

Matthew D. Nelson; Nick Trojanowski; J.B. George-Raizen; C.J. Smith; C.-C. Yu; Christopher Fang-Yen; David M. Raizen

Neuropeptides play central roles in the regulation of homeostatic behaviors such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioral quiescence.


Current Opinion in Neurobiology | 2013

A sleep state during C. elegans development.

Matthew D. Nelson; David M. Raizen

Caenorhabditis elegans is the simplest animal shown to sleep. It sleeps during lethargus, a larval transition stage. Behavior during lethargus has the sleep properties of a specific quiescent posture and elevated arousal threshold that are reversible to strong stimulation and of increased sleep drive following sleep deprivation. Genetic similarities between sleep regulation during C. elegans lethargus and sleep regulation in other animals point to a sleep state that was an evolutionarily ancestor to sleep both in C. elegans and other animals. Recent publications have shed light on key questions in sleep biology: First, How is sleep regulated? Second, How is sensory information gated during sleep? Third, How is sleep homeostasis mediated? Fourth, What is the core function of sleep?


Brain Behavior and Immunity | 2015

FMRFamide signaling promotes stress-induced sleep in Drosophila

Olivia Lenz; Jianmei Xiong; Matthew D. Nelson; David M. Raizen; Julie A. Williams

Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.


Immunology and Cell Biology | 2006

A novel approach to examining compositional heterogeneity of detergent-resistant lipid rafts.

Saira George; Matthew D. Nelson; Norman Dollahon; Anil Bamezai

Lipid rafts play an important role in cell signalling, cell adhesion and other cellular functions. Compositional heterogeneity of lipid rafts provides one mechanism of how lipid rafts provide the spatial and temporal regulation of cell signalling and cell adhesion. The constitutive presence of some signalling receptors/molecules and accumulation of others in the lipid raft allows them to interact with each other and thereby facilitate relay of signals from the plasma membrane to the cell interior. Devising a method that can analyze these lipid microdomains for the presence of signalling receptors/molecules on an individual raft basis is required to address the issue of lipid raft heterogeneity. SDS–PAGE analysis, currently used for analyses of detergent‐resistant lipid rafts, does not address this question. We have designed a cell‐free assay that captures detergent‐resistant lipid rafts with an antibody against a raft‐resident molecule and detects the presence of another lipid raft molecule. Our results suggest that detergent‐resistant lipid rafts, also known as detergent‐resistant membranes, are heterogeneous populations on an immortalized mouse T‐cell plasma membrane with respect to antigen receptor/signalling complex and other signalling/adhesion proteins. This cell‐free assay provides a simple and quick way to examine the simultaneous presence of two proteins in the lipid rafts and has the potential to estimate trafficking of molecules in and out of the lipid microdomains during cell signalling on a single detergent‐resistant lipid raft basis.


PLOS ONE | 2015

FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans

Matthew D. Nelson; Tom Janssen; Neil York; Kun He Lee; Liliane Schoofs; David M. Raizen

Neuropeptides signal through G-protein coupled receptors (GPCRs) to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF) motif or an amidated valine-arginine-phenylalanine (VRF) motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence.


eLife | 2017

The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans

Michael J. Iannacone; Isabel Beets; Lindsey E. Lopes; Matthew A. Churgin; Christopher Fang-Yen; Matthew D. Nelson; Liliane Schoofs; David M. Raizen

In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans, stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1, which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo, is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness. DOI: http://dx.doi.org/10.7554/eLife.19837.001


Cell Communication and Signaling | 2011

Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

Colleen Kennedy; Matthew D. Nelson; Anil Bamezai

BackgroundLipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents.ResultsDetergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen.ConclusionsFindings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.


Journal of Biological Chemistry | 2018

Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

Stefan Etzl; Robert Lindner; Matthew D. Nelson; Andreas Winkler

Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light–sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light–regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor–effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen–deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor–effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.

Collaboration


Dive into the Matthew D. Nelson's collaboration.

Top Co-Authors

Avatar

David M. Raizen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliane Schoofs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun He Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Janssen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stefan Etzl

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge