Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew DeGennaro is active.

Publication


Featured researches published by Matthew DeGennaro.


Nature | 2001

Molecular mechanism of cAMP modulation of HCN pacemaker channels.

Brian J. Wainger; Matthew DeGennaro; Bina Santoro; Steven A. Siegelbaum; Gareth R. Tibbs

Hyperpolarization-activated cation channels of the HCN gene family contribute to spontaneous rhythmic activity in both heart and brain. All four family members contain both a core transmembrane segment domain, homologous to the S1–S6 regions of voltage-gated K+ channels, and a carboxy-terminal 120 amino-acid cyclic nucleotide-binding domain (CNBD) motif. Homologous CNBDs are responsible for the direct activation of cyclic nucleotide-gated channels and for modulation of the HERG voltage-gated K+ channel—important for visual and olfactory signalling and for cardiac repolarization, respectively. The direct binding of cyclic AMP to the cytoplasmic site on HCN channels permits the channels to open more rapidly and completely after repolarization of the action potential, thereby accelerating rhythmogenesis. However, the mechanism by which cAMP binding modulates HCN channel gating and the basis for functional differences between HCN isoforms remain unknown. Here we demonstrate by constructing truncation mutants that the CNBD inhibits activation of the core transmembrane domain. cAMP binding relieves this inhibition. Differences in activation gating and extent of cAMP modulation between the HCN1 and HCN2 isoforms result largely from differences in the efficacy of CNBD inhibition.


PLOS Genetics | 2010

Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila

Benoît Biteau; Jason Karpac; Stephen Supoyo; Matthew DeGennaro; Ruth Lehmann; Heinrich Jasper

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


Nature | 2013

Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET

Matthew DeGennaro; Carolyn S. McBride; Laura Seeholzer; Takao Nakagawa; Emily Jane Dennis; Chloe Goldman; Nijole Jasinskiene; Anthony A. James; Leslie B. Vosshall

Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.


Trends in Cell Biology | 2012

Redox regulation of cell migration and adhesion

Thomas Ryan Hurd; Matthew DeGennaro; Ruth Lehmann

Reactive oxygen species (ROS), particularly hydrogen peroxide, and the proteins that regulate them play important roles in the migration and adhesion of cells. Stimulation of cell surface receptors with growth factors and chemoattractants generates ROS, which relay signals from the cell surface to key signaling proteins inside the cell. ROS act within cells to promote migration and also in nonmigrating cells to influence the behavior of migrating cells. Hydrogen peroxide has also been suggested to act as a chemoattractant in its own right, drawing immune cells to wounds. We discuss recent progress made towards understanding how organisms use ROS, and to what degree they depend on them, during the related processes of cell migration and adhesion.


BMC Genomics | 2016

The neurotranscriptome of the Aedes aegypti mosquito

Benjamin J. Matthews; Carolyn S. McBride; Matthew DeGennaro; Orion Despo; Leslie B. Vosshall

BackgroundA complete genome sequence and the advent of genome editing open up non-traditional model organisms to mechanistic genetic studies. The mosquito Aedes aegypti is an important vector of infectious diseases such as dengue, chikungunya, and yellow fever and has a large and complex genome, which has slowed annotation efforts. We used comprehensive transcriptomic analysis of adult gene expression to improve the genome annotation and to provide a detailed tissue-specific catalogue of neural gene expression at different adult behavioral states.ResultsWe carried out deep RNA sequencing across all major peripheral male and female sensory tissues, the brain and (female) ovary. Furthermore, we examined gene expression across three important phases of the female reproductive cycle, a remarkable example of behavioral switching in which a female mosquito alternates between obtaining blood-meals from humans and laying eggs. Using genome-guided alignments and de novo transcriptome assembly, our re-annotation includes 572 new putative protein-coding genes and updates to 13.5 and 50.3 % of existing transcripts within coding sequences and untranslated regions, respectively. Using this updated annotation, we detail gene expression in each tissue, identifying large numbers of transcripts regulated by blood-feeding and sexually dimorphic transcripts that may provide clues to the biology of male- and female-specific behaviors, such as mating and blood-feeding, which are areas of intensive study for those interested in vector control.ConclusionsThis neurotranscriptome forms a strong foundation for the study of genes in the mosquito nervous system and investigation of sensory-driven behaviors and their regulation. Furthermore, understanding the molecular genetic basis of mosquito chemosensory behavior has important implications for vector control.


Developmental Cell | 2011

Peroxiredoxin Stabilization of DE-Cadherin Promotes Primordial Germ Cell Adhesion

Matthew DeGennaro; Thomas Ryan Hurd; Daria Siekhaus; Benoît Biteau; Heinrich Jasper; Ruth Lehmann

Regulated adhesion between cells and their environment is critical for normal cell migration. We have identified mutations in a gene encoding the Drosophila hydrogen peroxide (H₂O₂)-degrading enzyme Jafrac1, which lead to germ cell adhesion defects. During gastrulation, primordial germ cells (PGCs) associate tightly with the invaginating midgut primordium as it enters the embryo; however, in embryos from jafrac1 mutant mothers this association is disrupted, leaving some PGCs trailing on the outside of the embryo. We observed similar phenotypes in embryos from DE-cadherin/shotgun (shg) mutant mothers and were able to rescue the jafrac1 phenotype by increasing DE-cadherin levels. This and our biochemical evidence strongly suggest that Jafrac1-mediated reduction of H₂O₂ is required to maintain DE-cadherin protein levels in the early embryo. Our results present in vivo evidence of a peroxiredoxin regulating DE-cadherin-mediated adhesion.


Current opinion in insect science | 2017

Genetic analysis of mosquito detection of humans

Joshua I Raji; Matthew DeGennaro

Mosquitoes detect the presence of humans by integrating chemosensory, thermal, and visual cues. Among these, odors are crucial for mosquito host detection. Insects have evolved a diverse repertoire of receptors to detect their plant and animal hosts. Genetic analysis of these receptors in Drosophila has set the stage for similar studies in mosquitoes. The diversity of the cues involved in mosquito host-seeking has made designing behavioral control strategies a challenge. The sensory receptors that are most important for mosquito detection of humans can now be determined using genome editing. Here, we will review our current understanding of the salient cues that attract mosquitoes, their receptors, and suggest ways forward for novel olfaction-based vector control strategies.


Developmental Biology | 2017

Transient transcriptional silencing alters the cell cycle to promote germline stem cell differentiation in Drosophila

Pooja Flora; Sean Schowalter; SiuWah Wong-Deyrup; Matthew DeGennaro; Mohamad Ali Nasrallah; Prashanth Rangan

Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast “re-programs” it away from self-renewal and toward the gamete differentiation program.


Current Biology | 2009

Temporal and Spatial Control of Germ-Plasm RNAs

Prashanth Rangan; Matthew DeGennaro; Kean Jaime-Bustamante; Rémi Xavier Coux; Rui Gonçalo Martinho; Ruth Lehmann


Cold Spring Harbor Symposia on Quantitative Biology | 2008

Regulating Gene Expression in the Drosophila Germ Line

Prashanth Rangan; Matthew DeGennaro; Ruth Lehmann

Collaboration


Dive into the Matthew DeGennaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinrich Jasper

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Gonçalo Martinho

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge