Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew E. Fagan is active.

Publication


Featured researches published by Matthew E. Fagan.


Environmental Research Letters | 2014

Multiple Pathways of Commodity Crop Expansion in Tropical Forest Landscapes

Patrick Meyfroidt; Kimberly M. Carlson; Matthew E. Fagan; Victor Hugo Gutiérrez-Vélez; Marcia N. Macedo; Lisa M. Curran; Ruth S. DeFries; George A. Dyer; Holly K. Gibbs; Eric F. Lambin; Douglas C. Morton; Valentina Robiglio

Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement, and livelihood outcomes; (v) intensive commodity crops may fail to spare land when inducing displacement. We conclude that understanding pathways of commodity crop expansion is essential to improve land use governance.


Environmental Research Letters | 2013

Land cover dynamics following a deforestation ban in northern Costa Rica

Matthew E. Fagan; Ruth S. DeFries; Steven E. Sesnie; J.P. Arroyo; Wayne Walker; Carlomagno Soto; Robin L. Chazdon; A. Sanchun

Forest protection policies potentially reduce deforestation and re-direct agricultural expansion to already-cleared areas. Using satellite imagery, we assessed whether deforestation for conversion to pasture and cropland decreased in the lowlands of northern Costa Rica following the 1996 ban on forest clearing, despite a tripling of area under pineapple cultivation in the last decade. We observed that following the ban, mature forest loss decreased from 2.2% to 1.2% per year, and the proportion of pineapple and other export-oriented cropland derived from mature forest declined from 16.4% to 1.9%. The post-ban expansion of pineapples and other crops largely replaced pasture, exotic and native tree plantations, and secondary forests. Overall, there was a small net gain in forest cover due to a shifting mosaic of regrowth and clearing in pastures, but cropland expansion decreased reforestation rates. We conclude that forest protection efforts in northern Costa Rica have likely slowed mature forest loss and succeeded in re-directing expansion of cropland to areas outside mature forest. Our results suggest that deforestation bans may protect mature forests better than older forest regrowth and may restrict clearing for large-scale crops more effectively than clearing for pasture.


Ecology and Society | 2011

Biophysical and Socioeconomic Factors Associated with Forest Transitions at Multiple Spatial and Temporal Scales

Charles B. Yackulic; Matthew E. Fagan; Meha Jain; Amir Jina; Yili Lim; Miriam E. Marlier; Robert Muscarella; Patricia Adame; Ruth S. DeFries; María Uriarte

Forest transitions (FT) occur when socioeconomic development leads to a shift from net deforestation to reforestation; these dynamics have been observed in multiple countries across the globe, including the island of Puerto Rico in the Caribbean. Starting in the 1950s, Puerto Rico transitioned from an agrarian to a manufacturing and service economy reliant on food imports, leading to extensive reforestation. In recent years, however, net reforestation has leveled off. Here we examine the drivers of forest transition in Puerto Rico from 1977 to 2000 at two subnational, nested spatial scales (municipality and barrio) and over two time periods (1977-1991 and 1991-2000). This study builds on previous work by considering the social and biophysical factors that influence both reforestation and deforestation at multiple spatial and temporal scales. By doing so within one analysis, this study offers a comprehensive understanding of the relative importance of various social and biophysical factors for forest transitions and the scales at which they are manifest. Biophysical factors considered in these analyses included slope, soil quality, and land-cover in the surrounding landscape. We also considered per capita income, population density, and the extent of protected areas as potential factors associated with forest change. Our results show that, in the 1977-1991 period, biophysical factors that exhibit variation at municipality scales (~100 km²) were more important predictors of forest change than socioeconomic factors. In this period, forest dynamics were driven primarily by abandonment of less productive, steep agricultural land in the western, central part of the island. These factors had less predictive power at the smaller barrio scale (~10 km²) relative to the larger municipality scale during this time period. The relative importance of socioeconomic variables for deforestation, however, increased over time as development pressures on available land increased. From 1991-2000, changes in forest cover reflected influences from multiple factors, including increasing population densities, land development pressure from suburbanization, and the presence of protected areas. In contrast to the 1977-1991 period, drivers of deforestation and reforestation over this second interval were similar for the two spatial scales of analyses. Generally, our results suggest that although broader socioeconomic changes in a given region may drive the demand for land, biophysical factors ultimately mediate where development occurs. Although economic development may initially result in reforestation due to rural to urban migration and the abandonment of agricultural lands, increased economic development may lead to deforestation through increased suburbanization pressures.


Journal of Animal Ecology | 2015

Season‐specific and guild‐specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats

Laura M. Cisneros; Matthew E. Fagan; Michael R. Willig

Fragmentation per se due to human land conversion is a landscape-scale phenomenon. Accordingly, assessment of distributional patterns across a suite of potentially connected communities (i.e. metacommunity structure) is an appropriate approach for understanding the effects of landscape modification and complements the plethora of fragmentation studies that have focused on local community structure. To date, metacommunity structure within human-modified landscapes has been assessed with regard to nestedness along species richness gradients. This is problematic because there is little support that species richness gradients are associated with the factors moulding species distributions. More importantly, many alternative patterns are possible, and different patterns may manifest during different seasons and for different guilds because of variation in resource availability and resource requirements of taxa. We determined the best-fit metacommunity structure of a phyllostomid bat assemblage, frugivore ensemble, and gleaning animalivore ensemble within a human-modified landscape in the Caribbean lowlands of Costa Rica during the dry and wet seasons to elucidate important structuring mechanisms. Furthermore, we identified the landscape characteristics associated with the latent gradient underlying metacommunity structure. We discriminated among multiple metacommunity structures by assessing coherence, range turnover, and boundary clumping of an ordinated site-by-species matrix. We identified the landscape characteristics associated with the latent gradient underlying metacommunity structure via hierarchical partitioning. Metacommunity structure was never nested nor structured along a richness gradient. The phyllostomid assemblage and frugivore ensemble exhibited Gleasonian structure (range turnover along a common gradient) during the dry season and Clementsian structure (range turnover and shared boundaries along a common gradient) during the wet season. Distance between forest patches and forest edge density structured the phyllostomid metacommunity during the dry and wet seasons, respectively. Proportion of pasture and forest patch density structured the frugivore metacommunity during the dry season. Gleaning animalivores exhibited chequerboard structure (mutually exclusive species pairs) during the dry season and random structure during the wet season. Metacommunity structure was likely mediated by differential resource use or interspecific relationships. Furthermore, the interaction between landscape characteristics and seasonal variation in resources resulted in season-specific and guild-specific distributional patterns.


Molecular Ecology | 2015

Mechanistic insights into landscape genetic structure of two tropical amphibians using field‐derived resistance surfaces

A. Justin Nowakowski; J. Andrew DeWoody; Matthew E. Fagan; Janna R. Willoughby

Conversion of forests to agriculture often fragments distributions of forest species and can disrupt gene flow. We examined effects of prevalent land uses on genetic connectivity of two amphibian species in northeastern Costa Rica. We incorporated data from field surveys and experiments to develop resistance surfaces that represent local mechanisms hypothesized to modify dispersal success of amphibians, such as habitat‐specific predation and desiccation risk. Because time lags can exist between forest conversion and genetic responses, we evaluated landscape effects using land‐cover data from different time periods. Populations of both species were structured at similar spatial scales but exhibited differing responses to landscape features. Litter frog population differentiation was significantly related to landscape resistances estimated from abundance and experiment data. Model support was highest for experiment‐derived surfaces that represented responses to microclimate variation. Litter frog genetic variation was best explained by contemporary landscape configuration, indicating rapid population response to land‐use change. Poison frog genetic structure was strongly associated with geographic isolation, which explained up to 45% of genetic variation, and long‐standing barriers, such as rivers and mountains. However, there was also partial support for abundance‐ and microclimate response‐derived resistances. Differences in species responses to landscape features may be explained by overriding effects of population size on patterns of differentiation for poison frogs, but not litter frogs. In addition, pastures are likely semi‐permeable to poison frog gene flow because the species is known to use pastures when remnant vegetation is present, but litter frogs do not. Ongoing reforestation efforts will probably increase connectivity in the region by increasing tree cover and reducing area of pastures.


Archive | 2012

Tracking deforestation and tree plantation expansion in a Costa Rican biological corridor using a Landsat time series

Matthew E. Fagan; Steven E. Sesnie; J.P. Arroyo; Wayne Walker; Carlomagno Soto; Robin L. Chazdon; A. Sanchun; Christopher Small; Ruth S. DeFries

This work was written as part of one of the authors official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.


Diversity and Distributions | 2015

Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity

Laura M. Cisneros; Matthew E. Fagan; Michael R. Willig


Remote Sensing | 2015

Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

Matthew E. Fagan; Ruth S. DeFries; Steven E. Sesnie; J. Pablo Arroyo-Mora; Carlomagno Soto; Aditya Singh; Philip A. Townsend; Robin L. Chazdon


Global Environmental Change-human and Policy Dimensions | 2015

Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions

Irene Shaver; Adina Chain-Guadarrama; Katherine A. Cleary; Andre Sanfiorenzo; Ricardo Santiago-García; Bryan Finegan; Leontina Hormel; Nicole Sibelet; Lee A. Vierling; Nilsa A. Bosque-Pérez; Fabrice DeClerck; Matthew E. Fagan; Lisette P. Waits


Ecological Applications | 2016

Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor

Matthew E. Fagan; Ruth S. DeFries; Steven E. Sesnie; J. Pablo Arroyo-Mora; Robin L. Chazdon

Collaboration


Dive into the Matthew E. Fagan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven E. Sesnie

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Finegan

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Researchain Logo
Decentralizing Knowledge