Matthew E. Kaplan
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew E. Kaplan.
Systematic Entomology | 1999
Nancy A. Moran; Matthew E. Kaplan; Michael J. Gelsey; Troy G. Murphy; Edwin A. Scholes
The genus Uroleucon, and the related genus Macrosiphoniella, represent a large Tertiary radiation of aphids, with a total of about 300 species distributed throughout the world, primarily on host plant species in the family Asteraceae. A molecular phylogenetic study was conducted to identify major clades within Uroleucon and to address the cladistic validity of current subgeneric categories, the evolution of host plant associations, the age of origin, and intercontinental movements in this genus. The seventeen study species included members of the three major subgenera of Uroleucon, species from Europe and North America, one member of Macrosiphoniella, and two outgroups. Data consisted of DNA sequences for three mitochondrial regions and the nuclear gene EF1alpha, for a total of 4287 sites. Nodes supported strongly in both parsimony and maximum likelihood analyses suggest that: (1) Nearctic Uromelan are a monophyletic group branching near the base of the genus and not related to European Uromelan, (2) the New World subgenus Lambersius is possibly monophyletic but is not a tightly related group and is not closely related to other North American species, and (3) Nearctic members of subgenus Uroleucon are a closely related monophyletic group not allied with Nearctic Uromelan or Lambersius. Instead they represent a separate colonization by an Old World ancestor, as they are nested within a strongly supported clade containing European members of both subgenera Uroleucon and Uromelan. Neither of these subgenera is monophyletic. Molecular clock calculations, based on calibrations of mitochondrial divergences from other insects, suggest that Uroleucon + Macrosiphoniella is a relatively recent radiation, probably no more than 5–10 million years old. Although largely confined to Asteraceae, this clade did not radiate in parallel with its host plants. Rather, lateral movement between lineages of Asteraceae must have occurred repeatedly.
European Journal of Human Genetics | 2004
Doron M. Behar; Michael F. Hammer; Daniel Garrigan; Richard Villems; Batsheva Bonne-Tamir; Martin B. Richards; David Gurwitz; Dror Rosengarten; Matthew E. Kaplan; Sergio Della Pergola; Lluis Quintana-Murci; Karl Skorecki
The relative roles of natural selection and accentuated genetic drift as explanations for the high frequency of more than 20 Ashkenazi Jewish disease alleles remain controversial. To test for the effects of a maternal bottleneck on the Ashkenazi Jewish population, we performed an extensive analysis of mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS-1) sequence and restriction site polymorphisms in 565 Ashkenazi Jews from different parts of Europe. These patterns of variation were compared with those of five Near Eastern (n=327) and 10 host European (n=849) non-Jewish populations. Only four mtDNA haplogroups (Hgs) (defined on the basis of diagnostic coding region RFLPs and HVS-1 sequence variants) account for ∼70% of Ashkenazi mtDNA variation. While several Ashkenazi Jewish mtDNA Hgs appear to derive from the Near East, there is also evidence for a low level of introgression from host European non-Jewish populations. HVS-1 sequence analysis revealed increased frequencies of Ashkenazi Jewish haplotypes that are rare or absent in other populations, and a reduced number of singletons in the Ashkenazi Jewish sample. These diversity patterns provide evidence for a prolonged period of low effective size in the history of the Ashkenazi population. The data best fit a model of an early bottleneck (∼100 generations ago), perhaps corresponding to initial migrations of ancestral Ashkenazim in the Near East or to Europe. A genetic bottleneck followed by the recent phenomenon of rapid population growth are likely to have produced the conditions that led to the high frequency of many genetic disease alleles in the Ashkenazi population.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Matthew C. Dulik; Amanda C. Owings; Jill B. Gaieski; Miguel Vilar; Alestine Andre; Crystal Lennie; Mary Adele Mackenzie; Ingrid Kritsch; Sharon Snowshoe; Ruth Wright; James F. Martin; Nancy Gibson; Thomas D. Andrews; Theodore G. Schurr; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.
PLOS Computational Biology | 2008
Joseph Schlecht; Matthew E. Kaplan; Kobus Barnard; Tatiana M. Karafet; Michael F. Hammer; Nirav Merchant
Genetic variation on the non-recombining portion of the Y chromosome contains information about the ancestry of male lineages. Because of their low rate of mutation, single nucleotide polymorphisms (SNPs) are the markers of choice for unambiguously classifying Y chromosomes into related sets of lineages known as haplogroups, which tend to show geographic structure in many parts of the world. However, performing the large number of SNP genotyping tests needed to properly infer haplogroup status is expensive and time consuming. A novel alternative for assigning a sampled Y chromosome to a haplogroup is presented here. We show that by applying modern machine-learning algorithms we can infer with high accuracy the proper Y chromosome haplogroup of a sample by scoring a relatively small number of Y-linked short tandem repeats (STRs). Learning is based on a diverse ground-truth data set comprising pairs of SNP test results (haplogroup) and corresponding STR scores. We apply several independent machine-learning methods in tandem to learn formal classification functions. The result is an integrated high-throughput analysis system that automatically classifies large numbers of samples into haplogroups in a cost-effective and accurate manner.
Journal of Human Genetics | 2015
GaneshPrasad ArunKumar; Tatiana V. Tatarinova; Jeff Duty; Debra Rollo; Adhikarla Syama; Varatharajan Santhakumari Arun; Valampuri John Kavitha; Petr Triska; Bennett Greenspan; R. Spencer Wells; Ramasamy Pitchappan; Christina J Adlera; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; Wolfgang Haak; Marc Haber; Angela Hobbs; Asif Javed; Li Jin; Matthew E. Kaplan; Shilin Li; Begoña Martínez-Cruz; Elizabeth Matisoo-Smith
Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.
BMC Genomics | 2014
Andrew C. Clarke; Stefan Prost; Jo-Ann L. Stanton; W. T. White; Matthew E. Kaplan; Elizabeth Matisoo-Smith
BackgroundNext-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users.ResultsHere we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling).ConclusionsAll steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources.
Scientific Reports | 2017
Nano Nagle; Mannis van Oven; Stephen Wilcox; Sheila van Holst Pellekaan; Chris Tyler-Smith; Yali Xue; Kaye N. Ballantyne; Leah Wilcox; Luka Papac; Karen Cooke; Roland A.H. van Oorschot; Peter McAllister; Lesley Williams; Manfred Kayser; R. John Mitchell; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.
Journal of Human Genetics | 2016
Marilza S. Jota; Daniela R. Lacerda; José Sandoval; Pedro Paulo Vieira; Dominique Ohasi; José E Santos-Júnior; Oscar Acosta; Cinthia Cuellar; Susana Revollo; César Paz-y-Miño; Ricardo Fujita; Gustavo A. Vallejo; Theodore G. Schurr; Eduardo Tarazona-Santos; Sergio Dj Pena; Qasim Ayub; Chris Tyler-Smith; Fabrício R. Santos; Li Jin; Hui Li; Shilin Li; Pandikumar Swamikrishnan; Asif Javed; Laxmi Parida; Ajay K. Royyuru; R. John Mitchell; Pierre Zalloua; Arun Kumar; Ganesh Prasad; Ramasamy Pitchappan
Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas—haplogroup Q-L54—in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26
Journal of Human Genetics | 2017
Nano Nagle; Kaye N. Ballantyne; Mannis van Oven; Chris Tyler-Smith; Yali Xue; Stephen Wilcox; Leah Wilcox; Rust Turkalov; Roland A.H. van Oorschot; Sheila van Holst Pellekaan; Theodore G. Schurr; Peter McAllister; Lesley Williams; Manfred Kayser; R. John Mitchell; Syama Adhikarla; Christina J. Adler; Elena Balanovska; Oleg Balanovsky; Jaume Bertranpetit; Andrew C. Clarke; David Comas; Alan Cooper; Clio Der Sarkissian; Matthew C. Dulik; Jill B. Gaieski; ArunKumar GaneshPrasad; Wolfgang Haak; Marc Haber; Angela Hobbs
Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors’ arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.
PLOS ONE | 2017
Guangbo Liu; Clayton Lanham; J. Ross Buchan; Matthew E. Kaplan
Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.