Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew E. Monroe is active.

Publication


Featured researches published by Matthew E. Monroe.


Journal of Virology | 2004

Identification of Proteins in Human Cytomegalovirus (HCMV) Particles: the HCMV Proteome

Susan M. Varnum; Daniel N. Streblow; Matthew E. Monroe; Patricia P. Smith; Kenneth J. Auberry; Ljiljana Paša-Tolić; Dai Wang; David G. Camp; Karin D. Rodland; Steven Wiley; William J. Britt; Thomas Shenk; Richard D. Smith; Jay A. Nelson

ABSTRACT Human cytomegalovirus (HCMV), a member of the herpesvirus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus.


Proteomics | 2011

Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells†

Yuexi Wang; Feng Yang; Marina A. Gritsenko; Yingchun Wang; Therese R. Clauss; Tao Liu; Yufeng Shen; Matthew E. Monroe; Daniel Lopez-Ferrer; Theresa Reno; Ronald J. Moore; Richard L. Klemke; David G. Camp; Richard D. Smith

In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed‐phase liquid chromatography strategy as a first dimension for two‐dimensional liquid chromatography tandem mass spectrometry (“shotgun”) proteomic analysis of trypsin‐digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed‐phase liquid chromatography as a first‐dimension fractionation strategy resulted in 1.8‐ and 1.6‐fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed‐phased strategy is an attractive alternative to strong cation exchange for two‐dimensional shotgun proteomic analysis.


PLOS Biology | 2004

Integrative Analysis of the Mitochondrial Proteome in Yeast

Holger Prokisch; Curt Scharfe; David G. Camp; Wenzhong Xiao; Lior David; Christophe Andreoli; Matthew E. Monroe; Ronald J. Moore; Marina A. Gritsenko; Christian Kozany; Kim K. Hixson; Heather M. Mottaz; Hans Zischka; Marius Ueffing; Zelek S. Herman; Ronald W. Davis; Thomas Meitinger; Peter J. Oefner; Richard D. Smith; Lars M. Steinmetz

In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets.

Joshua F. Alfaro; Cheng Xin Gong; Matthew E. Monroe; Joshua T. Aldrich; Therese R. Clauss; Samuel O. Purvine; Zihao Wang; David G. Camp; Jeffrey Shabanowitz; Pamela Stanley; Gerald W. Hart; Donald F. Hunt; Feng Yang; Richard D. Smith

O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimers disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.


Bioinformatics | 2007

VIPER: an advanced software package to support high-throughput LC-MS peptide identification

Matthew E. Monroe; Nikola Tolić; Navdeep Jaitly; Jason L. Shaw; Joshua N. Adkins; Richard D. Smith

SUMMARY The accurate mass and time (AMT) tag approach is used for analysis of large scale experiments by combining information generated over multiple datasets and instrument types. The VIPER software package is one of the key components of the data processing pipeline and implements automated algorithms to discover LC-MS features, align and match these LC-MS features to a database of peptides previously identified in LC-MS/MS analyses, and identify and quantify pairs of isotopically labeled peptides. AVAILABILITY VIPER may be downloaded free of charge at http://ncrr.pnl.gov/software/


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Molecular & Cellular Proteomics | 2005

Quantitative proteome analysis of human plasma following in vivo lypopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach

Wei Jun Qian; Matthew E. Monroe; Tao Liu; Jon M. Jacobs; Gordon A. Anderson; Yufeng Shen; Ronald J. Moore; David J. Anderson; Rui Zhang; Steve E. Calvano; Stephen F. Lowry; Wenzhong Xiao; Lyle L. Moldawer; Ronald W. Davis; Ronald G. Tompkins; David G. Camp; Richard D. Smith; Henry V. Baker; Paul E. Bankey; Timothy R. Billiar; Bernard H. Brownstein; Irshad H. Chaudry; J. Perren Cobb; Adrian Fay; Robert J. Feezor; Brad Freeman; Richard L. Gamelli; Nicole S. Gibran; Brian G. Harbrecht; Doug Hayden

Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes postdigestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional LC-FTICR mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC elution time AMT tag data base was initially generated using MS/MS following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag data base contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion of high abundance proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses, and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration.


Molecular & Cellular Proteomics | 2006

High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

Tao Liu; Wei Jun Qiant; Marina A. Gritsenko; Wenzhong Xiao; Lyle L. Moldawer; Amit Kaushal; Matthew E. Monroe; Susan M. Varnum; Ronald J. Moore; Samuel O. Purvine; Ronald V. Maier; Ronald W. Davis; Ronald G. Tompkins; David G. Camp; Richard D. Smith; Henry V. Baker; Paul E. Bankey; Timothy R. Billiar; Bernard H. Brownstein; Steve E. Calvano; Celeste Campbell-Finnerty; George Casella; Irshad H. Chaudry; Mashkoor A. Choudhry; J. Perren Cobb; Asit De; Constance Elson; Bradley D. Freeman; Richard L. Gamelli; Nicole S. Gibran

Although human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein we describe a strategy that combines immunoaffinity subtraction and subsequent chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with two-dimensional LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this “divide-and-conquer” strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 different proteins with 1494 proteins identified by multiple peptides. Numerous low abundance proteins were identified, exemplified by 78 “classic” cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients that provides a foundation for future high throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.


Bioinformatics | 2008

DeconMSn: A Software Tool for accurate parent ion monoisotopic mass determination for tandem mass spectra

Anoop Mayampurath; Navdeep Jaitly; Samuel O. Purvine; Matthew E. Monroe; Kenneth J. Auberry; Joshua N. Adkins; Richard D. Smith

UNLABELLED DeconMSn accurately determines the monoisotopic mass and charge state of parent ions from high-resolution tandem mass spectrometry data, offering significant improvement for LTQ_FT and LTQ_Orbitrap instruments over the commercially delivered Thermo Fisher Scientifics extract_msn tool. Optimal parent ion mass tolerance values can be determined using accurate mass information, thus improving peptide identifications for high-mass measurement accuracy experiments. For low-resolution data from LCQ and LTQ instruments, DeconMSn incorporates a support-vector-machine-based charge detection algorithm that identifies the most likely charge of a parent species through peak characteristics of its fragmentation pattern. AVAILABILITY http://ncrr.pnl.gov/software/ or http://www.proteomicsresource.org/.


Journal of Virology | 2007

Quantitative Analysis of Human Immunodeficiency Virus Type 1-Infected CD4+ Cell Proteome: Dysregulated Cell Cycle Progression and Nuclear Transport Coincide with Robust Virus Production

Eric Y. Chan; Wei Jun Qian; Deborah L. Diamond; Tao Liu; Marina A. Gritsenko; Matthew E. Monroe; David G. Camp; Richard D. Smith; Michael G. Katze

ABSTRACT Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of ∼3,200 proteins in the CD4+ CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.

Collaboration


Dive into the Matthew E. Monroe's collaboration.

Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Moore

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joshua N. Adkins

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wei Jun Qian

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Samuel O. Purvine

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marina A. Gritsenko

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gordon A. Anderson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vladislav A. Petyuk

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary S. Lipton

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge