Matthew E. Price
Salisbury University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew E. Price.
Chemico-Biological Interactions | 2013
Helen Mumford; Cerys J. Docx; Matthew E. Price; A. Christopher Green; J.E.H. Tattersall; Stuart J. Armstrong
Potent organophosphorous (OP) agents, such as VX, are hazardous by absorption through the skin and are resistant to conventional pharmacological antidotal treatments. The residence time of a stoichiometric bioscavenger, human butyrylcholinesterase (huBuChE), in the plasma more closely matches that of VX than do the residence times of conventional therapy drugs (oxime, anti-muscarinic, anticonvulsant). Intramuscular (i.m.) huBuChE afforded almost complete protection when administered prior to the onset of observable cholinergic signs of VX poisoning, but once signs of poisoning became evident the efficacy of i.m. huBuChE decreased. A combination of nerve agent therapy drugs (oxime, anti-muscarinic, anticonvulsant) with huBuChE (i.m.) protected 100% (8/8) of guinea-pigs from a lethal dose of VX (0.74 mg/kg) to 48 h, even when administered on signs of poisoning. Survival was presumed to be due to immediate alleviation of the cholinergic crisis by the conventional pharmacological treatment drugs, in conjunction with bioscavenger that prevented further absorbed agent reaching the AChE targets. Evidence to support this proposed mechanism of action was obtained from PKPD experiments in which multiple blood samples and microdialysate samples were collected from individual conscious ambulatory animals. Plasma concentrations of intramuscularly-administered atropine, diazepam and HI-6 reached a peak within 15 min and were eliminated rapidly within 4h. Plasma concentrations of huBuChE administered by the i.m. route took approximately 24h to reach a peak, but were well-maintained over the subsequent 7days. Thus, the pharmacological therapy rapidly treated the initial signs of poisoning, whilst the bioscavenger provided prolonged protection by neutralising further nerve agent entering the bloodstream and preventing it from reaching the target organs.
Clinical Toxicology | 2011
Helen Mumford; Matthew E. Price; David E. Lenz; Douglas M. Cerasoli
Context. Human butyrylcholinesterase (huBuChE) has potential utility as a post-exposure therapy following percutaneous nerve agent poisoning as there is a slower absorption of agent by this route and hence a later onset of poisoning. Methods. We used surgically implanted radiotelemetry devices to monitor heart rate, EEG, body temperature and locomotor activity in guinea pigs challenged with VX via the percutaneous route. Results. Treatment with huBuChE (24.2 mg/kg, i.m.) at 30 or 120 min following percutaneous VX (~2.5 × LD50) protected 9 out of 10 animals from lethality. When i.m. huBuChE administration was delayed until the onset of observable signs of systemic cholinergic poisoning, only one out of six animals survived to 7 days. Survival increased to 50% when the same dose of huBuChE was given intravenously at the onset of signs of poisoning. This dose represents approximately 1/10th the stoichiometric equivalent of the dose of VX administered (0.74 mg/kg). Intramuscular administration of huBuChE (24.2 mg/kg) alone did not produce any changes in heart rate, brain electrical activity, temperature or locomotion compared to saline control. Survival following VX and huBuChE treatment was associated with minimal incapacitation and observable signs of poisoning, and the mitigation or prevention of detrimental physiological changes (e.g. seizure, bradycardia and hypothermia) observed in VX + saline-treated animals. At 7 days, cholinesterase activity in the erythrocytes and most brain areas of guinea pigs that received huBuChE at either 18 h prior to or 30 min following VX was not significantly different from that of naïve, weight-matched control animals. Conclusion. Percutaneous VX poisoning was successfully treated using post-exposure therapy with huBuChE bioscavenger. The opportunity for post-exposure treatment may have particular relevance in civilian settings, and this is a promising indication for the use of huBuChE.
MedChemComm | 2012
Christopher M. Timperley; M. Bird; Christopher Green; Matthew E. Price; John E. Chad; Simon R. Turner; J.E.H. Tattersall
Syntheses of 1,1-(propane-1,3-diyl)bis(4-tert-butylpyridinium) diiodide (MB327) and its di(methanesulfonate) salt (MB399) are described. Protection experiments in guinea-pigs showed that MB399, a noncompetitive nicotinic antagonist that produces fast open channel block at the ion channel of the nicotinic acetylcholine receptor, is able to improve survival of animals poisoned with the organophosphorus nerve agent soman when used therapeutically in combination with hyoscine and physostigmine. Successful anti-nicotinic therapy, a novel approach to the treatment of nerve agent poisoning, may offer a revolutionary improvement in nerve agent countermeasures compared to the current optimisation of existing pharmacological approaches.
Chemico-Biological Interactions | 2010
Helen Mumford; Matthew E. Price; Douglas M. Cerasoli; Wolfgang Teschner; Hartmut J. Ehrlich; Hans Peter Schwarz; David E. Lenz
The physiological effects of human plasma-derived butyrylcholinesterase (huBuChE) administration and its modulation of the effects of percutaneous VX challenge are poorly understood. Percutaneously administered nerve agents are more slowly absorbed than inhaled agents; consequently, signs of poisoning occur later, with a longer duration. Telemetry was used to monitor heart rate, EEG, temperature and activity in guinea-pigs. Treatment with huBuChE at 30 or 120 min following percutaneous VX challenge ( approximately 2.5 x LD(50)) provided 100% protection from lethality. When huBuChE administration was delayed until the onset of observable signs of poisoning only 1 out of 6 animals survived to the end of the experiment at 7 days. This study adds to the body of evidence demonstrating the efficacy of huBuChE in animals by describing the successful therapeutic use of a protein bioscavenger as a post-exposure treatment against dermal exposure to VX up to 2h post-exposure. This study simultaneously used telemetric methods to show that the efficacy of huBuChE is linked to the prevention of detrimental physiological changes observed in control VX-treated animals. Post-exposure therapy is a promising additional indication for the concept of use of this material, and one that has particular relevance in a civilian exposure scenario.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 2015
Helen Rice; Christopher H. Dalton; Matthew E. Price; Stuart Graham; A. Christopher Green; John Jenner; Helen J. Groombridge; Christopher M. Timperley
To support the effort to eliminate the Syrian Arab Republic chemical weapons stockpile safely, there was a requirement to provide scientific advice based on experimentally derived information on both toxicity and medical countermeasures (MedCM) in the event of exposure to VM, VX or VM–VX mixtures. Complementary in vitro and in vivo studies were undertaken to inform that advice. The penetration rate of neat VM was not significantly different from that of neat VX, through either guinea pig or pig skin in vitro. The presence of VX did not affect the penetration rate of VM in mixtures of various proportions. A lethal dose of VM was approximately twice that of VX in guinea pigs poisoned via the percutaneous route. There was no interaction in mixed agent solutions which altered the in vivo toxicity of the agents. Percutaneous poisoning by VM responded to treatment with standard MedCM, although complete protection was not achieved.
Toxicology Letters | 2017
T.M. Mann; Matthew E. Price; C.L. Whitmore; R.L. Perrott; T.R. Laws; R.R. McColm; E.R. Emery; J.E.H. Tattersall; A.C. Green; Helen Rice
The prolonged systemic exposure that follows skin contamination with low volatility nerve agents, such as VX, requires treatment to be given over a long time due to the relatively short half-lives of the therapeutic compounds used. Bioscavengers, such as butyrylcholinesterase (BChE), have been shown to provide effective post-exposure protection against percutaneous nerve agent when given immediately on signs of poisoning and to reduce reliance on additional treatments. In order to assess the benefits of administration of bioscavenger at later times, its effectiveness was assessed when administration was delayed for 2h after the appearance of signs of poisoning in guinea-pigs challenged with VX (4×LD50). VX-challenged animals received atropine, HI-6 and avizafone on signs of poisoning and 2h later the same combination with or without bioscavenger. Five out of 6 animals which received BChE 2h after the appearance of signs of poisoning survived to the end of the study at 48h, compared with 6 out of 6 which received BChE immediately on signs. All the animals (n=6+6) that received only MedCM, without the addition of BChE, died within 10h of poisoning. The toxicokinetics of a sub-lethal challenge of percutaneous VX were determined in untreated animals. Blood VX concentration peaked at approximately 4h after percutaneous dosing with 0.4×LD50; VX was still detectable at 36h and had declined to levels below the lower limit of quantification (10pg/mL) by 48h in 7 of 8 animals, with the remaining animal having a concentration of 12pg/mL. These studies confirm the persistent systemic exposure to nerve agent following percutaneous poisoning and demonstrate that bioscavenger can be an effective component of treatment even if its administration is delayed.
Toxicology Letters | 2017
C.L. Whitmore; A.R. Cook; T.M. Mann; Matthew E. Price; E.R. Emery; N. Roughley; D. Flint; S. Stubbs; Stuart J. Armstrong; Helen Rice; J.E.H. Tattersall
Post-exposure nerve agent treatment usually includes administration of an oxime, which acts to restore function of the enzyme acetylcholinesterase (AChE). For immediate treatment of military personnel, this is usually administered with an autoinjector device, or devices containing the oxime such as pralidoxime, atropine and diazepam. In addition to the autoinjector, it is likely that personnel exposed to nerve agents, particularly by the percutaneous route, will require further treatment at medical facilities. As such, there is a need to understand the relationship between dose rate, plasma concentration, reactivation of AChE activity and efficacy, to provide supporting evidence for oxime infusions in nerve agent poisoning. Here, it has been demonstrated that intravenous infusion of HI-6, in combination with atropine, is efficacious against a percutaneous VX challenge in the conscious male Dunkin-Hartley guinea-pig. Inclusion of HI-6, in addition to atropine in the treatment, improved survival when compared to atropine alone. Additionally, erythrocyte AChE activity following poisoning was found to be dose dependent, with an increased dose rate of HI-6 (0.48mg/kg/min) resulting in increased AChE activity. As far as we are aware, this is the first study to correlate the pharmacokinetic profile of HI-6 with both its pharmacodynamic action of reactivating nerve agent inhibited AChE and with its efficacy against a persistent nerve agent exposure challenge in the same conscious animal.
Toxicology | 2007
Janet R. Wetherell; Matthew E. Price; Helen Mumford; Stuart J. Armstrong; Leah Scott
Neurotoxicology | 2006
Janet R. Wetherell; Matthew E. Price; Helen Mumford
Toxicology Letters | 2011
Simon R. Turner; John E. Chad; Matthew E. Price; Christopher M. Timperley; M. Bird; A.C. Green; J.E.H. Tattersall
Collaboration
Dive into the Matthew E. Price's collaboration.
United States Army Medical Research Institute of Chemical Defense
View shared research outputs