Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew E. Watts is active.

Publication


Featured researches published by Matthew E. Watts.


Nature | 2004

Effectiveness of the global protected area network in representing species diversity

Ana S. L. Rodrigues; Sandy Andelman; Mohamed I. Bakarr; Luigi Boitani; Thomas M. Brooks; Richard M. Cowling; Lincoln D. C. Fishpool; Gustavo A. B. da Fonseca; Kevin J. Gaston; Michael R. Hoffmann; Janice S. Long; Pablo A. Marquet; John D. Pilgrim; Robert L. Pressey; Jan Schipper; Wes Sechrest; Simon N. Stuart; Les G. Underhill; Robert W. Waller; Matthew E. Watts; Xie Emily Yan

The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planets land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, ‘one size fits all’—conservation targets.


BioScience | 2004

Global gap analysis: Priority regions for expanding the global protected-area network

Ana S. L. Rodrigues; H. Resit Akçakaya; Sandy Andelman; Mohamed I. Bakarr; Luigi Boitani; Thomas M. Brooks; Janice Chanson; Lincoln D. C. Fishpool; Gustavo A. B. da Fonseca; Kevin J. Gaston; Michael R. Hoffmann; Pablo A. Marquet; John D. Pilgrim; Robert L. Pressey; Jan Schipper; Wes Sechrest; Simon N. Stuart; Les G. Underhill; Robert W. Waller; Matthew E. Watts; Xie Yan

Abstract Protected areas are the single most important conservation tool. The global protected-area network has grown substantially in recent decades, now occupying 11.5% of Earths land surface, but such growth has not been strategically aimed at maximizing the coverage of global biodiversity. In a previous study, we demonstrated that the global network is far from complete, even for the representation of terrestrial vertebrate species. Here we present a first attempt to provide a global framework for the next step of strategically expanding the network to cover mammals, amphibians, freshwater turtles and tortoises, and globally threatened birds. We identify unprotected areas of the world that have remarkably high conservation value (irreplaceability) and are under serious threat. These areas concentrate overwhelmingly in tropical and subtropical moist forests, particularly on tropical mountains and islands. The expansion of the global protected-area network in these regions is urgently needed to prevent the loss of unique biodiversity.


Ecological Applications | 2009

Incorporating ecological and evolutionary processes into continental‐scale conservation planning

Kerrie A. Wilson; Matthew E. Watts; Janet Stein; Sandra L. Berry; Josie Carwardine; Mark Stafford Smith; Brendan Mackey; Hugh P. Possingham

Systematic conservation planning research has focused on designing systems of conservation areas that efficiently protect a comprehensive and representative set of species and habitats. Recently, there has been an emphasis on improving the adequacy of conservation area design to promote the persistence and future generation of biodiversity. Few studies have explored incorporating ecological and evolutionary processes into conservation planning assessments. Biodiversity in Australia is maintained and generated by numerous ecological and evolutionary processes at various spatial and temporal scales. We accommodated ecological and evolutionary processes in four ways: (1) using sub-catchments as planning units to facilitate the protection of the integrity and function of ecosystem processes occurring on a sub-catchment scale; (2) targeting one type of ecological refugia, drought refugia, which are critical for the persistence of many species during widespread drought; (3) targeting one type of evolutionary refugia which are important for maintaining and generating unique biota during long-term climatic changes; and (4) preferentially grouping priority areas along vegetated waterways to account for the importance of connected waterways and associated riparian areas in maintaining processes. We identified drought refugia, areas of relatively high and regular herbage production in arid and semiarid Australia, from estimates of gross primary productivity derived from satellite data. In this paper, we combined the novel incorporation of these processes with a more traditional framework of efficiently representing a comprehensive sample of biodiversity to identify spatial priorities across Australia. We explored the trade-offs between economic costs, representation targets, and connectivity. Priority areas that considered ecological and evolutionary processes were more connected along vegetated waterways and were identified for a small increase in economic cost. Priority areas for conservation investment are more likely to have long-term benefits to biodiversity if ecological and evolutionary processes are considered in their identification.


Ecological Applications | 2008

PLANNING FOR PERSISTENCE IN MARINE RESERVES: A QUESTION OF CATASTROPHIC IMPORTANCE

Edward T. Game; Matthew E. Watts; Scott A. Wooldridge; Hugh P. Possingham

Large-scale catastrophic events, although rare, lie generally beyond the control of local management and can prevent marine reserves from achieving biodiversity outcomes. We formulate a new conservation planning problem that aims to minimize the probability of missing conservation targets as a result of catastrophic events. To illustrate this approach we formulate and solve the problem of minimizing the impact of large-scale coral bleaching events on a reserve system for the Great Barrier Reef, Australia. We show that by considering the threat of catastrophic events as part of the reserve design problem it is possible to substantially improve the likely persistence of conservation features within reserve networks for a negligible increase in cost. In the case of the Great Barrier Reef, a 2% increase in overall reserve cost was enough to improve the long-run performance of our reserve network by >60%. Our results also demonstrate that simply aiming to protect the reefs at lowest risk of catastrophic bleaching does not necessarily lead to the best conservation outcomes, and enormous gains in overall persistence can be made by removing the requirement to represent all bioregions in the reserve network. We provide an explicit and well-defined method that allows the probability of catastrophic disturbances to be included in the site selection problem without creating additional conservation targets or imposing arbitrary presence/absence thresholds on existing data. This research has implications for reserve design in a changing climate.


Frontiers in Ecology and the Environment | 2010

Spatial marine zoning for fisheries and conservation

Charles Steinback; Matthew E. Watts; Astrid Scholz; Hugh P. Possingham

Protected areas are an effective tool for reducing biodiversity loss. Current legislation distinguishes various types of marine protected areas, each allowing different levels of resource extraction. However, almost all of the theory for spatial conservation planning is focused on identifying no-take reserves. The current approaches to zoning for multiple types of protected areas could result in suboptimal plans in terms of protecting biodiversity and minimizing negative socioeconomic impacts. We overcame these limitations in the first application of the multizone planning tool, Marxan with Zones, to design a network of four types of protected areas in the context of Californias Marine Life Protection Act. We have produced a zoning configuration that entails mean value losses of less than 9% for every fishery, without compromising conservation goals. We also found that a spatial numerical optimization tool that allows for multiple zones outperforms a tool that can identify one zone (ie marine reserves) in two ways: first, the overall impact on the fishing industry is reduced, and second, a more equitable impact on different fishing sectors is achieved. Finally, we examined the tradeoffs between representing biodiversity features and impacting fisheries. Our approach is applicable to both marine and terrestrial conservation planning, and delivers an ecosystem-based management outcome that balances conservation and industry objectives.


Animal Biotelemetry | 2015

An open Web-based system for the analysis and sharing of animal tracking data

Ross G. Dwyer; Charles Brooking; Wilfred Brimblecombe; Hamish A. Campbell; Jane Hunter; Matthew E. Watts; Craig E. Franklin

BackgroundImprovements in telemetry technology are allowing us to monitor animal movements with increasing accuracy, precision and frequency. The increased complexity of the data collections, however, demands additional software and programming skills to process, store and disseminate the datasets. Recent focus on data availability has also heightened the need for sustainable data management solutions to ensure data integrity and provide longer term access. In the last ten years, a number of online facilities have been developed for the archiving, processing and sharing of telemetry data. These facilities offer secure storage, multi-user support and analysis tools and are a step along the way to improving data access, long-term data preservation and science communication. While these software platforms promote data sharing, access to the majority of the data and to the software behind these systems remains restricted. In this paper, we present a comprehensive, highly accessible and fully transparent software facility for animal movement data.ResultsThe online system we developed (http://oztrack.org) offers a set of robust, up-to-date and accessible tools for managing, processing, visualising and analysing animal location data and linking these outputs with environmental datasets. As OzTrack uses exclusively free and open-source software, and the source code is available online, the system promotes open access not only to data but also to the tools and software underpinning the system.ConclusionsWe outline the capabilities and limitations of the infrastructure design and discuss the uptake of this platform by the Australasian biotelemetry community. We discuss whether an open approach to analysis tools and software encourages a more open approach to sharing data, information and knowledge. Finally, we discuss why a free and open approach enhances longer term sustainability and enables data storage facilities to evolve in parallel with the telemetry devices themselves.


Conservation Biology | 2010

Conservation planning when costs are uncertain.

Josie Carwardine; Kerrie A. Wilson; Stefan Hajkowicz; Robert J. Smith; Matthew E. Watts; Hugh P. Possingham

Spatially explicit information on the financial costs of conservation actions can improve the ability of conservation planning to achieve ecological and economic objectives, but the magnitude of this improvement may depend on the accuracy of the cost estimates. Data on costs of conservation actions are inherently uncertain. For example, the cost of purchasing a property for addition to a protected-area network depends on the individual landholders preferences, values, and aspirations, all of which vary in space and time, and the effect of this uncertainty on the conservation priority of a site is relatively untested. We investigated the sensitivity of the conservation priority of sites to uncertainty in cost estimates. We explored scenarios for expanding (four-fold) the protected-area network in Queensland, Australia to represent a range of vegetation types, species, and abiotic environments, while minimizing the cost of purchasing new properties. We estimated property costs for 17, 790 10 × 10 km sites with data on unimproved land values. We systematically changed property costs and noted how these changes affected conservation priority of a site. The sensitivity of the priority of a site to changes in cost data was largely dependent on a sites importance for meeting conservation targets. Sites that were essential or unimportant for meeting targets maintained high or low priorities, respectively, regardless of cost estimates. Sites of intermediate conservation priority were sensitive to property costs and represented the best option for efficiency gains, especially if they could be purchased at a lower price than anticipated. Thus, uncertainty in cost estimates did not impede the use of cost data in conservation planning, and information on the sensitivity of the conservation priority of a site to estimates of the price of land can be used to inform strategic conservation planning before the actual price of the land is known.


Journal of Animal Ecology | 2010

Estuarine crocodiles ride surface currents to facilitate long-distance travel

Hamish A. Campbell; Matthew E. Watts; Scott Sullivan; Mark A. Read; Severine Choukroun; Steve R. Irwin; Craig E. Franklin

1. The estuarine crocodile (Crocodylus porosus) is the worlds largest living reptile. It predominately inhabits freshwater and estuarine habitats, but widespread geographic distribution throughout oceanic islands of the South-east Pacific suggests that individuals undertake sizeable ocean voyages. 2. Here we show that adult C. porosus adopt behavioural strategies to utilise surface water currents during long-distance travel, enabling them to move quickly and efficiently over considerable distances. 3. We used acoustic telemetry to monitor crocodile movement throughout 63 km of river, and found that when individuals engaged in a long-distance, constant direction journey (>10 km day(-1)), they would only travel when current flow direction was favourable. Depth and temperature measurements from implanted transmitters showed that they remained at the water surface during travel but would dive to the river substratum or climb out on the river bank if current flow direction became unfavourable. 4. Satellite positional fixes from tagged crocodiles engaged in ocean travel were overlaid with residual surface current (RSC) estimates. The data showed a strong correlation existed between the bearing of the RSC and that of the travelling crocodile (r(2) = 0.92, P < 0.0001). 5. The study demonstrates that C. porosus dramatically increase their travel potential by riding surface currents, providing an effective dispersal strategy for this species.


Ecological Applications | 2012

Forest conservation delivers highly variable coral reef conservation outcomes

Stacy D. Jupiter; Elizabeth R. Selig; Matthew E. Watts; Benjamin S. Halpern; Muhammad Kamal; Chris Roelfsema; Hugh P. Possingham

Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning.


Marine and Freshwater Research | 2012

V-Track: software for analysing and visualising animal movement from acoustic telemetry detections

Hamish A. Campbell; Matthew E. Watts; Ross G. Dwyer; Craig E. Franklin

The tagging of aquatic and semi-aquatic animals with acoustic transmitters and their detection by passive underwater receivers has gained huge popularity over the past decade. This technology offers researchers the opportunity to monitor the finite- to broad-scale movements of multiple individuals over many years; however, the sheer scale and spatial complexity of these datasets are often beyond the capabilities of routine database and spread-sheet applications. In thepresentpaper,wedescribesoftware(V-Track)thatgreatlyfacilitatestheassimilation,analysisandsynthesisofanimal- location data collected by underwater passive acoustic receivers. The principal features within V-Track are the behavioural event qualifier (BEQ) and the receiver-distance matrix (RDM) calculator. The BEQ identifies and catalogues horizontal movements from receiver detection data, or vertical movements from transmitter sensor data (depth or temperature). The RDMis generatedfrom thegeographicallocationof the acousticreceivers andis utilisedbyV-Trackto illustrate the behavioural event information in a spatial context. V-Track is a package written within the R-programming language, and a graphical user interface is also provided. Here, we feature two case studies to demonstrate software functionality for defining and quantifying behaviour in acoustically tagged marine and freshwater vertebrates. Additional keywords: behaviour, R, tracking VEMCO, VR2W.

Collaboration


Dive into the Matthew E. Watts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross G. Dwyer

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Josie Carwardine

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge