Matthew Fuszard
University of St Andrews
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew Fuszard.
Biochimica et Biophysica Acta | 2014
Marion Babot; Paola Labarbuta; Amanda Birch; Sara Kee; Matthew Fuszard; Catherine H. Botting; Ilka Wittig; Heinrich Heide; Alexander Galkin
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.
The EMBO Journal | 2015
Roman A. Romanov; Alán Alpár; Ming-Dong Zhang; Amit Zeisel; A. Calas; Marc Landry; Matthew Fuszard; Sally L. Shirran; Robert Schnell; Árpád Dobolyi; Márk Oláh; Lauren Spence; Jan Mulder; Henrik Martens; Miklós Palkovits; Mathias Uhlén; Harald H. Sitte; Catherine H. Botting; Ludwig Wagner; Sten Linnarsson; Tomas Hökfelt; Tibor Harkany
A hierarchical hormonal cascade along the hypothalamic‐pituitary‐adrenal axis orchestrates bodily responses to stress. Although corticotropin‐releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single‐cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH‐releasing neuron population reliant on secretagogins Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Pharmacological tools combined with RNA interference demonstrate that secretagogins loss of function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral corticosterone levels in response to acute stress. Cumulatively, these data define a novel secretagogin neuronal locus and molecular axis underpinning stress responsiveness.
FEBS Letters | 2013
Margherita Ciano; Matthew Fuszard; Heinrich Heide; Catherine H. Botting; Alexander Galkin
ND3 and NDUFA9 physically interact by cross‐linking study (View interaction)
Applied and Environmental Microbiology | 2013
Eoin Gunnigle; Paul McCay; Matthew Fuszard; Catherine H. Botting; Florence Abram; Vincent O'Flaherty
Low-temperature anaerobic digestion (LTAD) technology is underpinned by a diverse microbial community. The methanogenic archaea represent a key functional group in these consortia, undertaking CO2 reduction as well as acetate and methylated C1 metabolism with subsequent biogas (40 to 60% CH4 and 30 to 50% CO2) formation. However, the cold adaptation strategies, which allow methanogens to function efficiently in LTAD, remain unclear. Here, a pure-culture proteomic approach was employed to study the functional characteristics of Methanosarcina barkeri (optimum growth temperature, 37�C), which has been detected in LTAD bioreactors. Two experimental approaches were undertaken. The first approach aimed to characterize a low-temperature shock response (LTSR) of M. barkeri DSMZ 800T grown at 37�C with a temperature drop to 15�C, while the second experimental approach aimed to examine the low-temperature adaptation strategies (LTAS) of the same strain when it was grown at 15�C. The latter experiment employed cell viability and growth measurements (optical density at 600 nm [OD600]), which directly compared M. barkeri cells grown at 15�C with those grown at 37�C. During the LTSR experiment, a total of 127 proteins were detected in 37�C and 15�C samples, with 20 proteins differentially expressed with respect to temperature, while in the LTAS experiment 39% of proteins identified were differentially expressed between phases of growth. Functional categories included methanogenesis, cellular information processing, and chaperones. By applying a polyphasic approach (proteomics and growth studies), insights into the low-temperature adaptation capacity of this mesophilically characterized methanogen were obtained which suggest that the metabolically diverse Methanosarcinaceae could be functionally relevant for LTAD systems.
ChemBioChem | 2013
Jesko Koehnke; Falk Morawitz; Andrew F. Bent; Wael E. Houssen; Sally L. Shirran; Matthew Fuszard; Iain A. Smellie; Catherine H. Botting; Margaret C. M. Smith; Marcel Jaspars; James H. Naismith
Ringing the changes: Selenazolines have applications in medicinal chemistry, but their synthesis is challenging. We report a new convenient and less toxic route to these heterocycles that starts from commercially available selenocysteine. The new route depends on a heterocyclase enzyme that creates oxazolines and thiazolines from serines/threonines and cysteines.
Molecular Biology of the Cell | 2014
Ioannis Kasioulis; Heather M. Syred; Peri Tate; Andrew J. Finch; Joseph Shaw; Anne Seawright; Matthew Fuszard; Catherine H. Botting; Sally L. Shirran; Ian R. Adams; Ian J. Jackson; Veronica van Heyningen; Patricia L. Yeyati
Chromatin remodeling enzymes can also have nonhistone roles, broadening their biological functions. It is shown that Kdm3a binding to cellular chaperones in the cytoplasm is relevant for morphogenetic events leading to infertility in enzymatically null mice. This provides evidence that Kdm3a is not just a histone modifier.
Aquatic Biosystems | 2012
Matthew Fuszard; Phillip C. Wright; Catherine A. Biggs
BackgroundThe well-lit surface waters of oligotrophic gyres significantly contribute to global primary production. Marine cyanobacteria of the genus Prochlorococcus are a major fraction of photosynthetic organisms within these areas. Labile phosphate is considered a limiting nutrient in some oligotrophic regions such as the Caribbean Sea, and as such it is crucial to understand the physiological response of primary producers such as Prochlorococcus to fluctuations in the availability of this critical nutrient.ResultsProchlorococcus strains representing both high light (HL) (MIT9312) and low light (LL) (NATL2A and SS120) ecotypes were grown identically in phosphate depleted media (10 μM Pi). The three strains displayed marked differences in cellular protein expression, as determined by high throughput large scale quantitative proteomic analysis. The only strain to demonstrate a significantly different growth rate under reduced phosphate conditions was MIT9312. Additionally, there was a significant increase in phosphate-related proteins such as PhoE (> 15 fold increase) and a depression of the Rubisco protein RbcL abundance in this strain, whereas there appeared to be no significant change within the LL strain SS120.ConclusionsThis differential response between ecotypes highlights the relative importance of phosphate availability to each strain and from these results we draw the conclusion that the expression of phosphate acquisition mechanisms are activated at strain specific phosphate concentrations.
FEMS Microbiology Ecology | 2015
Eoin Gunnigle; Jeppe Lund Nielsen; Matthew Fuszard; Catherine H. Botting; Jerome Sheahan; Vincent O'Flaherty; Florence Abram
Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD.
Fems Microbiology Letters | 2010
Matthew Fuszard; Phillip C. Wright; Catherine A. Biggs
The proteomic response of Prochlorococcus marinus MED4, subjected to extended phosphate (P) starvation, was measured utilizing the quantitative technique isobaric tags for relative and absolute quantitation. Seventeen proteins were identified as significantly more abundant in MED4 cultures grown under P-stressed conditions than the nonstressed cultures, while 14 proteins were observed to be significantly less abundant. Proteins involved in P acquisition, and membrane-associated functions such as protein folding, export and recycling as well as a protein putatively associated with maintaining DNA integrity were found to be higher in abundance than the nonstressed cultures. The effect of P starvation was also noticeable on the photosynthetic apparatus, whereby important proteins involved with light harvesting were reduced in abundance directly affecting the metabolism. This is expected, as the cell is starved of an essential nutrient; however, proteins involved in maintaining structural integrity in the photosystems are more abundant, which was not expected. We conclude that MED4 is capable of acclimating to long periods of P deprivation through a suite of processes including activating P transport and acquisition mechanisms, general stress responses, reduction of energy-related metabolic processes and importantly maintaining structural integrity in vital cell mechanisms.
Journal of Proteomics | 2013
Khadija Shabbiri; Catherine H. Botting; Ahmad Adnan; Matthew Fuszard
UNLABELLED Brevibacterium linens DSM 20158 is an industrially important actinobacterium which is well-known for the production of amino acids and enzymes. However, as this strain has an unsequenced genome, there is no detailed information regarding its proteome although another strain of this microbe, BL2, has a shotgun genome sequence. However, this still does not cover the entire scope of its proteome. The present study is carried out by first identifying proteins by homology matches using the Mascot search algorithm followed by an advanced approach using de novo sequencing and MS BLAST to expand the B. linens proteome. The proteins identified in the secretome and cellular portion appear to be involved in various metabolic and physiological processes of this unsequenced organism. This study will help to enhance the usability of this strain of B. linens in different areas of research in the future rather than mainly in the food industries. BIOLOGICAL SIGNIFICANCE The present study describes the construction of the first detailed proteomic reference map of B. linens DSM 20158 with unsequenced genome by comparative proteome research analysis. This opens new horizons in proteomics to understand the role of proteins involved in the metabolism and physiology of other organisms with unsequenced genomes.