Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew G. Moffitt is active.

Publication


Featured researches published by Matthew G. Moffitt.


ACS Nano | 2011

Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles

Yunyong Guo; Saman Harirchian-Saei; Celly M. S. Izumi; Matthew G. Moffitt

Emerging strategies for assembling inorganic nanoparticles into ensembles with multiscale organization are establishing a new paradigm for the synthesis of devices and functional materials with applications ranging from drug delivery to photonics. In this work, the solution self-assembly of amphiphilic ionic block copolymers into morphologically tunable aggregates provides the inspiration and design strategy for nanoparticle building blocks with the essential chemical and conformational features of ionic block copolymer chains in aqueous media. We produce inorganic nanoparticles with surface-tethered mixed brushes of hydrophobic and chargeable hydrophilic chains which self-assemble in polar solvent mixtures into unprecedented hierarchical superstructures analogous to known ionic block copolymer aggregates but with complex organizations of nanoparticles in three dimensions. Electrostatic repulsion between hydrophilic chains forces nonequilibrium pathways to variable kinetic structures with internal lamellar organization of nanoparticles; however, decreasing electrostatic interactions through salt or acid addition allows tunable equilibrium assemblies, including supermicelles and bilayer vesicles of nanoparticles, to be formed. The application of ionic block copolymer assembly principles and mechanisms opens a new chemical toolbox for the organization of nanoparticles into functional assemblies.


Journal of the American Chemical Society | 2011

Flow-Directed Block Copolymer Micelle Morphologies via Microfluidic Self-Assembly

Chih-Wei Wang; David Sinton; Matthew G. Moffitt

The self-assembly of amphiphilic block copolymers in a gas-liquid microfluidic reactor produces variable, flow-directed micellar morphologies entirely different from off-chip equilibrium structures. A polystyrene-block-poly(acrylic acid) copolymer, which forms exclusively spheres off-chip, generates kinetic cylinders, Y-junctions, bilayers, and networks by a mechanism of collision-coalescence enabled by strong and localized on-chip shear fields. Variation in the size and relative amount of flow-directed nanostructures is achieved by changing the water content and flow rate. These results demonstrate on-chip processing routes to specific functional colloidal nanostructures.


Langmuir | 2008

Controlled self-assembly of quantum dots and block copolymers in a microfluidic device.

Greg Schabas; Huda Yusuf; Matthew G. Moffitt; David Sinton

The controlled self-assembly of polymer-stabilized quantum dots (QDs) into mesoscale aqueous spherical assemblies using microfluidics is described. In a flow-focusing configuration, self-assembly is initiated by the addition of water to a blended solution of polystyrene-coated QDs and amphiphilic polystyrene-block-poly(acrylic acid) stabilizing chains and terminated in a downstream quench step. The on-chip evolution of assemblies is monitored through fluorescence microscopy, and particle size distributions are determined off-chip by transmission electron microscopy. On-chip size control of the assemblies is demonstrated via both the average water concentration in the channel and the flow rate.


ACS Nano | 2013

Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip.

Chih-Wei Wang; David Sinton; Matthew G. Moffitt

We investigate the effects of variation in chemical conditions (solvent composition, water content, polymer concentration, and added salt) on the morphologies formed by PS-b-PAA in DMF/dioxane/water mixtures in a two-phase gas-liquid segmented microfluidic reactor. The differences in morphologies between off-chip and on-chip self-assembly and on-chip morphological trends for different chemical conditions are explained by the interplay of top-down shear effects (coalescence and breakup) and bottom-up chemical forces. Using off-chip morphology results, we construct a water content-solvent composition phase diagram showing disordered, sphere, cylinder, and vesicle regions. On-chip morphologies are found to deviate from off-chip morphologies by three identified shear-induced paths: 1) sphere-to-cylinder, and 2) sphere-to-vesicle transitions, both via shear-induced coalescence when initial micelle sizes are small, and 3) cylinder-to-sphere transitions via shear-induced breakup when initial micelle sizes are large (high capillary number conditions). These pathways contribute to the generation of large extended bilayer aggregates uniquely on-chip, at either increased polymer or salt concentrations. Collectively these results demonstrate the broad utility of top-down directed molecular self-assembly in conjunction with chemical forces to control morphology and size of polymer colloids at the nanoscale.


Langmuir | 2008

Formation and Shear-Induced Processing of Quantum Dot Colloidal Assemblies in a Multiphase Microfluidic Chip

Greg Schabas; Chih-Wei Wang; Ali Oskooei; Huda Yusuf; Matthew G. Moffitt; David Sinton

The controlled self-assembly of polymer-stabilized quantum dots (QDs) into mesoscale aqueous spherical assemblies termed quantum dot compound micelles (QDCMs) using a two-phase gas-segmented microfluidic reactor is described. Self-assembly is initiated by the fast mixing of water (approximately 1 s) with a blend solution of polystyrene-coated QDs and amphiphilic polystyrene-block-poly(acrylic acid) stabilizing chains via chaotic advection within liquid plugs moving through a sinusoidal channel. Subsequent recirculating flow within a post-formation channel subjects the dynamic QDCMs to shear-induced processing, controlled via the flow rate and channel length, before a final quench into pure water. During processing, larger QDCMs within the initial population undergo breakup into smaller particles, resulting in smaller mean particle sizes, smaller relative standard deviations, and more skewed distribution shapes, as the overall shear exposure is increased. For these cases, shear-induced size reduction is sufficient to dominate surface tension-driven growth.


Langmuir | 2009

Block Copolymer Strands with Internal Microphase Separation Structure via Self-Assembly at the Air−Water Interface

Eric W. Price; Yunyong Guo; Canchen Wang; Matthew G. Moffitt

Block copolymer microphase separation in the bulk is coupled to amphiphilic block copolymer self-assembly at the air-water interface to yield hierarchical Langmuir-Blodgett (LB) structures combining organization at the meso- and nanoscales. A blend of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) (Mn=141K, 11.4 wt % PEO) and polystyrene-b-poly(butadiene) (PS-b-PB) (Mn=31.9K, 28.5 wt % PB) containing a PS-b-PB weight fraction of f=0.75 was deposited at the air-water interface, resulting in the spontaneous generation of aggregates with multiscale organization, including nanoscale cylinders in mesoscale strands, via evaporation of the spreading solvent. The resulting features were characterized in LB films via AFM and TEM and at the air-water interface via Langmuir compression isotherms. Blends containing lower PS-b-PB contents formed mesoscale aggregate morphologies of continents and strands (f=0.50) or mesoscale continents with holes (f=0.25), but without the internal nanoscale organization found in the f=0.75 blend. The interfacial self-assembly of pure PS-b-PB at the air-water interface (f=1) yielded taller and more irregularly shaped aggregates than blends containing PS-b-PEO, indicating the integral role of the amphiphilic copolymer in regulating the mesoscale organization of the hierarchically structured features.


Langmuir | 2010

Controlled self-assembly of quantum dot-block copolymer colloids in multiphase microfluidic reactors.

Chih-Wei Wang; Ali Oskooei; David Sinton; Matthew G. Moffitt

The controlled self-assembly of large compound quantum dot micelles (QDCMs), consisting of constituents of polymer-stabilized quantum dots (QDs) and amphiphilic polystyrene-b-poly(acrylic acid) stabilizing chains, in gas-liquid segmented microfluidic reactors is demonstrated. Self-assembly is initiated by fast mixing of water with the polymer constituents via chaotic advection, as liquid plugs containing reactants move through a sinusoidal mixing channel. The resulting QDCMs are then processed within a postformation channel, where circulating flow patterns develop within the liquid plugs, followed by off-chip quenching and analysis by transmission electron microscopy (TEM). Particle processing via circulating flow is found to involve a combination of particle growth via collision-induced coalescence and shear-induced particle breakup. The final mean QDCM sizes represent kinetic states arising from the competition between these two mechanisms, depending on tunable chemical and flow parameters. A systematic investigation of the experimental variables that influence particle size and polydispersity, including water concentration, flow rate, and the gas-to-liquid flow ratio, is conducted, demonstrating tunability of QDCM sizes in the range of approximately 40-140 nm. The importance of shear-induced particle breakup in the limit of high shear is illustrated by a common minimum particle size, 41 +/- 1 nm, which is achieved for all water contents by increasing the total flow rate to sufficiently high values.


Langmuir | 2012

Flow-directed assembly of block copolymer vesicles in the lab-on-a-chip.

Chih-Wei Wang; Aman Bains; David Sinton; Matthew G. Moffitt

We demonstrate a microfluidic approach to the production of block copolymer vesicles via flow-directed self-assembly in a segmented gas-liquid device. Chemical conditions that favor spherical micelles in the bulk are found to yield a nearly pure population of vesicles on a chip-a transformation of two full morphological steps-because of a coalescence mechanism enabled by high shear. The production of polymeric vesicles via top-down control in a microfluidic device enables new processing routes to applications including drug delivery formulations in the lab-on-a-chip.


Langmuir | 2010

Patterning block copolymer aggregates via Langmuir-Blodgett transfer to microcontact-printed substrates.

Saman Harirchian-Saei; Michael C. P. Wang; Byron D. Gates; Matthew G. Moffitt

We demonstrate a new strategy for producing hierarchical polymer nanostructures, which combines nanoscale self-assembly of amphiphilic block copolymers at the air-water interface with microscale templated assembly of the resulting aggregates on chemically patterned substrates. Aggregates are formed via interfacial self-assembly of 141k polystyrene-b-poly(ethylene oxide) (PS-b-PEO, MW = 141k, 11.4 wt % PEO) or a blend of 185k PS-b-PEO (MW = 185k, 18.9 wt % PEO) and PS-coated CdS nanoparticles to form strandlike copolymer or copolymer-nanoparticle aggregates. Using Langmuir-Blodgett (LB) techniques, the aggregates are then transferred to patterned substrates possessing alternating hydrophilic/hydrophobic stripes, obtained by microcontact printing octadecyltrichlorosilane (OTS) on glass. The aggregates are transferred under various conditions of surface pressure, orientation of the patterned substrate, and withdrawal speed. Templated assembly of aggregates into the hydrophilic substrate domains is achieved when the hydrophilic/hydrophobic stripes are oriented perpendicular to the water surface during LB transfer; this is explained by surface energy heterogeneities along the subphase-substrate contact line, which induce selective dewetting and concomitant monolayer rearrangement at the drying front. In contrast, parallel orientation of stripes results in nonselective transfer of the monolayer without registration to the underlying surface pattern. By studying the effect of surface pressure, we show that packing constraints imposed by compression of aggregates to high surface densities prevent the formation of patterned LB films that match the established periodicity of the OTS-patterned glass. As well, it is shown that efficient transfer of aggregates to the patterned glass requires slower substrate withdrawal speeds compared to transfer to unpatterned hydrophilic glass.


Langmuir | 2013

Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor.

Chih-Wei Wang; Aman Bains; David Sinton; Matthew G. Moffitt

We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.

Collaboration


Dive into the Matthew G. Moffitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aman Bains

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge