Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Gage is active.

Publication


Featured researches published by Matthew Gage.


Diabetes | 2013

Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction

Piruthivi Sukumar; Hema Viswambharan; Helen Imrie; Richard M. Cubbon; Nadira Yuldasheva; Matthew Gage; S Galloway; A Skromna; P Kandavelu; C X Santos; Vk Gatenby; J Smith; David J. Beech; Stephen B. Wheatcroft; Keith M. Channon; Ajay M. Shah; Mark T. Kearney

Insulin resistance is characterized by excessive endothelial cell generation of potentially cytotoxic concentrations of reactive oxygen species. We examined the role of NADPH oxidase (Nox) and specifically Nox2 isoform in superoxide generation in two complementary in vivo models of human insulin resistance (endothelial specific and whole body). Using three complementary methods to measure superoxide, we demonstrated higher levels of superoxide in insulin-resistant endothelial cells, which could be pharmacologically inhibited both acutely and chronically, using the Nox inhibitor gp91ds-tat. Similarly, insulin resistance–induced impairment of endothelial-mediated vasorelaxation could also be reversed using gp91ds-tat. siRNA-mediated knockdown of Nox2, which was specifically elevated in insulin-resistant endothelial cells, significantly reduced superoxide levels. Double transgenic mice with endothelial-specific insulin resistance and deletion of Nox2 showed reduced superoxide production and improved vascular function. This study identifies Nox2 as the central molecule in insulin resistance–mediated oxidative stress and vascular dysfunction. It also establishes pharmacological inhibition of Nox2 as a novel therapeutic target in insulin resistance–related vascular disease.


Diabetes | 2011

Insulin Resistance Impairs Circulating Angiogenic Progenitor Cell Function and Delays Endothelial Regeneration

Matthew Kahn; Nadira Yuldasheva; Richard M. Cubbon; Jessica Smith; Sheikh Tawqeer Rashid; Hema Viswambharan; Helen Imrie; Afroze Abbas; Adil Rajwani; Amir Aziz; Piruthivi Sukumar; Matthew Gage; Mark T. Kearney; Stephen B. Wheatcroft

OBJECTIVE Circulating angiogenic progenitor cells (APCs) participate in endothelial repair after arterial injury. Type 2 diabetes is associated with fewer circulating APCs, APC dysfunction, and impaired endothelial repair. We set out to determine whether insulin resistance adversely affects APCs and endothelial regeneration. RESEARCH DESIGN AND METHODS We quantified APCs and assessed APC mobilization and function in mice hemizygous for knockout of the insulin receptor (IRKO) and wild-type (WT) littermate controls. Endothelial regeneration after femoral artery wire injury was also quantified after APC transfusion. RESULTS IRKO mice, although glucose tolerant, had fewer circulating Sca-1+/Flk-1+ APCs than WT mice. Culture of mononuclear cells demonstrated that IRKO mice had fewer APCs in peripheral blood, but not in bone marrow or spleen, suggestive of a mobilization defect. Defective vascular endothelial growth factor–stimulated APC mobilization was confirmed in IRKO mice, consistent with reduced endothelial nitric oxide synthase (eNOS) expression in bone marrow and impaired vascular eNOS activity. Paracrine angiogenic activity of APCs from IRKO mice was impaired compared with those from WT animals. Endothelial regeneration of the femoral artery after denuding wire injury was delayed in IRKO mice compared with WT. Transfusion of mononuclear cells from WT mice normalized the impaired endothelial regeneration in IRKO mice. Transfusion of c-kit+ bone marrow cells from WT mice also restored endothelial regeneration in IRKO mice. However, transfusion of c-kit+ cells from IRKO mice was less effective at improving endothelial repair. CONCLUSIONS Insulin resistance impairs APC function and delays endothelial regeneration after arterial injury. These findings support the hypothesis that insulin resistance per se is sufficient to jeopardize endogenous vascular repair. Defective endothelial repair may be normalized by transfusion of APCs from insulin-sensitive animals but not from insulin-resistant animals.


Diabetes | 2012

Increasing Circulating IGFBP1 Levels Improves Insulin Sensitivity, Promotes Nitric Oxide Production, Lowers Blood Pressure, and Protects Against Atherosclerosis

Adil Rajwani; Vivienne Ezzat; Jessica Smith; Nadira Yuldasheva; Edward R. Duncan; Matthew Gage; Richard M. Cubbon; Matthew Kahn; Helen Imrie; Afroze Abbas; Hema Viswambharan; Amir Aziz; Piruthivi Sukumar; Antonio Vidal-Puig; Jaswinder K. Sethi; Shouhong Xuan; Ajay M. Shah; Peter J. Grant; Karen E. Porter; Mark T. Kearney; Stephen B. Wheatcroft

Low concentrations of insulin-like growth factor (IGF) binding protein-1 (IGFBP1) are associated with insulin resistance, diabetes, and cardiovascular disease. We investigated whether increasing IGFBP1 levels can prevent the development of these disorders. Metabolic and vascular phenotype were examined in response to human IGFBP1 overexpression in mice with diet-induced obesity, mice heterozygous for deletion of insulin receptors (IR+/−), and ApoE−/− mice. Direct effects of human (h)IGFBP1 on nitric oxide (NO) generation and cellular signaling were studied in isolated vessels and in human endothelial cells. IGFBP1 circulating levels were markedly suppressed in dietary-induced obese mice. Overexpression of hIGFBP1 in obese mice reduced blood pressure, improved insulin sensitivity, and increased insulin-stimulated NO generation. In nonobese IR+/− mice, overexpression of hIGFBP1 reduced blood pressure and improved insulin-stimulated NO generation. hIGFBP1 induced vasodilatation independently of IGF and increased endothelial NO synthase (eNOS) activity in arterial segments ex vivo, while in endothelial cells, hIGFBP1 increased eNOS Ser1177 phosphorylation via phosphatidylinositol 3-kinase signaling. Finally, in ApoE−/− mice, overexpression of hIGFBP1 reduced atherosclerosis. These favorable effects of hIGFBP1 on insulin sensitivity, blood pressure, NO production, and atherosclerosis suggest that increasing IGFBP1 concentration may be a novel approach to prevent cardiovascular disease in the setting of insulin resistance and diabetes.


Endocrinology | 2009

Vascular Insulin-Like Growth Factor-I Resistance and Diet-Induced Obesity

Helen Imrie; Afroze Abbas; Hema Viswambharan; Adil Rajwani; Richard M. Cubbon; Matthew Gage; Matthew Kahn; Vivienne Ezzat; Edward R. Duncan; Peter J. Grant; Ramzi Ajjan; Stephen B. Wheatcroft; Mark T. Kearney

Obesity and type 2 diabetes mellitus are characterized by insulin resistance, reduced bioavailability of the antiatherosclerotic signaling molecule nitric oxide (NO), and accelerated atherosclerosis. IGF-I, the principal growth-stimulating peptide, which shares many of the effects of insulin, may, like insulin, also be involved in metabolic and vascular homeostasis. We examined the effects of IGF-I on NO bioavailability and the effect of obesity/type 2 diabetes mellitus on IGF-I actions at a whole-body level and in the vasculature. In aortic rings IGF-I blunted phenylephrine-mediated vasoconstriction and relaxed rings preconstricted with phenylephrine, an effect blocked by N(G)-monomethyl L-arginine. IGF-I increased NO synthase activity to an extent similar to that seen with insulin and in-vivo IGF-I led to serine phosphorylation of endothelial NO synthase (eNOS). Mice rendered obese using a high-fat diet were less sensitive to the glucose-lowering effects of insulin and IGF-I. IGF-I increased aortic phospho-eNOS levels in lean mice, an effect that was blunted in obese mice. eNOS activity in aortae of lean mice increased 1.6-fold in response to IGF-I compared with obese mice. IGF-I-mediated vasorelaxation was blunted in obese mice. These data demonstrate that IGF-I increases eNOS phosphorylation in-vivo, increases eNOS activity, and leads to NO-dependent relaxation of conduit vessels. Obesity is associated with resistance to IGF-I at a whole-body level and in the endothelium. Vascular IGF-I resistance may represent a novel therapeutic target to prevent or slow the accelerated vasculopathy seen in humans with obesity or type 2 diabetes mellitus.


Diabetes | 2012

Novel Role of the IGF-1 Receptor in Endothelial Function and Repair: Studies in Endothelium-Targeted IGF-1 Receptor Transgenic Mice

Helen Imrie; Hema Viswambharan; Piruthivi Sukumar; Afroze Abbas; Richard M. Cubbon; Nadira Yuldasheva; Matthew Gage; J Smith; S Galloway; A Skromna; Sheikh Tawqeer Rashid; T. S. Futers; Shouhong Xuan; Vk Gatenby; Peter J. Grant; Keith M. Channon; David J. Beech; Stephen B. Wheatcroft; Mark T. Kearney

We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to NG-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair.


Atherosclerosis | 2013

Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: A role for reactive oxygen species

Matthew Gage; Nadira Yuldasheva; Hema Viswambharan; Piruthivi Sukumar; Richard M. Cubbon; S Galloway; Helen Imrie; A Skromna; Jessica Smith; Christopher L. Jackson; Mark T. Kearney; Stephen B. Wheatcroft

OBJECTIVE Systemic insulin resistance is associated with a portfolio of risk factors for atherosclerosis development. We sought to determine whether insulin resistance specifically at the level of the endothelium promotes atherosclerosis and to examine the potential involvement of reactive oxygen species. METHODS We cross-bred mice expressing a dominant negative mutant human insulin receptor specifically in the endothelium (ESMIRO) with ApoE(-/-) mice to examine the effect of endothelium-specific insulin resistance on atherosclerosis. RESULTS ApoE(-/-)/ESMIRO mice had similar blood pressure, plasma lipids and whole-body glucose tolerance, but blunted endothelial insulin signalling, in comparison to ApoE(-/-) mice. Atherosclerosis was significantly increased in ApoE(-/-)/ESMIRO mice at the aortic sinus (226 ± 16 versus 149 ± 24 × 10(3) μm(2), P = 0.01) and lesser curvature of the aortic arch (12.4 ± 1.2% versus 9.4 ± 0.9%, P = 0.035). Relaxation to acetylcholine was blunted in aorta from ApoE(-/-)/ESMIRO mice (Emax 65 ± 41% versus 103 ± 6%, P = 0.02) and was restored by the superoxide dismutase mimetic MnTMPyP (Emax 112 ± 15% versus 65 ± 41%, P = 0.048). Basal generation of superoxide was increased 1.55 fold (P = 0.01) in endothelial cells from ApoE(-/-)/ESMIRO mice and was inhibited by the NADPH oxidase inhibitor gp91ds-tat (-12 ± 0.04%, P = 0.04), the NO synthase inhibitor L-NMMA (-8 ± 0.02%, P = 0.001) and the mitochondrial specific inhibitor rotenone (-23 ± 0.04%, P = 0.006). CONCLUSIONS Insulin resistance specifically at the level of the endothelium leads to acceleration of atherosclerosis in areas with disturbed flow patterns such as the aortic sinus and the lesser curvature of the aorta. We have identified a potential role for increased generation of reactive oxygen species from multiple enzymatic sources in promoting atherosclerosis in this setting.


The EMBO Journal | 2017

A G1‐like state allows HIV‐1 to bypass SAMHD1 restriction in macrophages

Petra Mlcochova; Katherine A. Sutherland; Sarah A. Watters; Cosetta Bertoli; Robertus A. M. de Bruin; Jan Rehwinkel; Stuart J. D. Neil; Gina M. Lenzi; Baek Kim; Asim Khwaja; Matthew Gage; Christiana Georgiou; Alexandra Chittka; Simon Yona; Mahdad Noursadeghi; Greg J. Towers; Ravindra K. Gupta

An unresolved question is how HIV‐1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle‐associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascade, culminating in upregulation of CDK1 with subsequent SAMHD1 T592 phosphorylation and deactivation of its antiviral activity. HIV infection is limited to these G1‐like phase macrophages at the single‐cell level. Depletion of SAMHD1 in macrophages decouples the association between infection and expression of cell cycle‐associated proteins, with terminally differentiated macrophages becoming highly susceptible to HIV‐1. We observe both embryo‐derived and monocyte‐derived tissue‐resident macrophages in a G1‐like phase at frequencies approaching 20%, suggesting how macrophages sustain HIV‐1 replication in vivo. Finally, we reveal a SAMHD1‐dependent antiretroviral activity of histone deacetylase inhibitors acting via p53 activation. These data provide a basis for host‐directed therapeutic approaches aimed at limiting HIV‐1 burden in macrophages that may contribute to curative interventions.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Haploinsufficiency of the Insulin-Like Growth Factor-1 Receptor Enhances Endothelial Repair and Favorably Modifies Angiogenic Progenitor Cell Phenotype

Nadira Yuldasheva; Sheikh Tawqeer Rashid; Natalie Haywood; Paul A. Cordell; Romana S Mughal; Hema Viswambharan; Helen Imrie; Piruthivi Sukumar; Richard M. Cubbon; Amir Aziz; Matthew Gage; Kamatamu Amanda Mbonye; Jessica Smith; S Galloway; A Skromna; D. Julian A. Scott; Mark T. Kearney; Stephen B. Wheatcroft

Objectives— Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. Approach and Results— We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R+/−). Endothelial regeneration after arterial injury was accelerated in IGF1R+/− mice. Although the yield of angiogenic progenitor cells was lower in IGF1R+/− mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R+/− bone marrow–derived CD117+ cells into wild-type mice. IGF1R+/− cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Conclusions— Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow–derived CD117+ cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury.


Stem Cells | 2014

Restoring Akt1 activity in outgrowth endothelial cells from south asian men rescues vascular reparative potential

Richard M. Cubbon; Nadira Yuldasheva; Hema Viswambharan; Ben Mercer; Baliga; Sam L. Stephen; J Askham; Piruthivi Sukumar; A Skromna; Romana S Mughal; Amn Walker; Alexander F. Bruns; Marc A. Bailey; S Galloway; Helen Imrie; Matthew Gage; Mark Rakobowchuk; Jing Li; Karen E. Porter; Sreenivasan Ponnambalam; Stephen B. Wheatcroft; David J. Beech; Mark T. Kearney

Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell‐based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire‐induced femoral artery injury augmented re‐endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re‐endothelialization of wire‐injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC‐mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men. Stem Cells 2014;32:2714–2723


Scientific Reports | 2016

The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms.

Benoit Pourcet; Matthew Gage; Theresa León; Kirsty E. Waddington; Oscar M. Pello; Knut R. Steffensen; Antonio Castrillo; Annabel F. Valledor; Inés Pineda-Torra

IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases, yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process, inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally, IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally, LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP, a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8, thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion, LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders.

Collaboration


Dive into the Matthew Gage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge