Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Haynes is active.

Publication


Featured researches published by Matthew Haynes.


PLOS Biology | 2006

The Marine Viromes of Four Oceanic Regions

Florent E. Angly; Ben Felts; Mya Breitbart; Peter Salamon; Robert Edwards; Craig H. Carlson; Amy M. Chan; Matthew Haynes; Scott Kelley; Hong-Hong Liu; Joseph M. Mahaffy; Jennifer Mueller; Jim Nulton; Robert Olson; Rachel Parsons; Steve Rayhawk; Curtis A. Suttle; Forest Rohwer

Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earths oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure.


Nature | 2008

Functional metagenomic profiling of nine biomes

Elizabeth A. Dinsdale; Robert Edwards; Dana Hall; Florent E. Angly; Mya Breitbart; Mike Furlan; Christelle Desnues; Matthew Haynes; Linlin Li; Lauren D. McDaniel; Mary Ann Moran; Karen E. Nelson; Christina Nilsson; Robert Olson; John H. Paul; Beltran Rodriguez Brito; Yijun Ruan; Brandon K. Swan; Rick Stevens; David L. Valentine; Rebecca Vega Thurber; Linda Wegley; Bryan A. White; Forest Rohwer

Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.


Nature | 2010

Viruses in the faecal microbiota of monozygotic twins and their mothers

Alejandro Reyes; Matthew Haynes; Nicole Hanson; Florent E. Angly; Andrew C. Heath; Forest Rohwer; Jeffrey I. Gordon

Viral diversity and life cycles are poorly understood in the human gut and other body habitats. Phages and their encoded functions may provide informative signatures of a human microbiota and of microbial community responses to various disturbances, and may indicate whether community health or dysfunction is manifest after apparent recovery from a disease or therapeutic intervention. Here we report sequencing of the viromes (metagenomes) of virus-like particles isolated from faecal samples collected from healthy adult female monozygotic twins and their mothers at three time points over a one-year period. We compared these data sets with data sets of sequenced bacterial 16S ribosomal RNA genes and total-faecal-community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their faecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phages that exhibit remarkable genetic stability. These results indicate that a predatory viral–microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.


BMC Genomics | 2006

Using pyrosequencing to shed light on deep mine microbial ecology

Robert Edwards; Beltran Rodriguez-Brito; Linda Wegley; Matthew Haynes; Mya Breitbart; Dean M. Peterson; Martin O. Saar; Scott C Alexander; E. Calvin Alexander Jr.; Forest Rohwer

BackgroundContrasting biological, chemical and hydrogeological analyses highlights the fundamental processes that shape different environments. Generating and interpreting the biological sequence data was a costly and time-consuming process in defining an environment. Here we have used pyrosequencing, a rapid and relatively inexpensive sequencing technology, to generate environmental genome sequences from two sites in the Soudan Mine, Minnesota, USA. These sites were adjacent to each other, but differed significantly in chemistry and hydrogeology.ResultsComparisons of the microbes and the subsystems identified in the two samples highlighted important differences in metabolic potential in each environment. The microbes were performing distinct biochemistry on the available substrates, and subsystems such as carbon utilization, iron acquisition mechanisms, nitrogen assimilation, and respiratory pathways separated the two communities. Although the correlation between much of the microbial metabolism occurring and the geochemical conditions from which the samples were isolated could be explained, the reason for the presence of many pathways in these environments remains to be determined. Despite being physically close, these two communities were markedly different from each other. In addition, the communities were also completely different from other microbial communities sequenced to date.ConclusionWe anticipate that pyrosequencing will be widely used to sequence environmental samples because of the speed, cost, and technical advantages. Furthermore, subsystem comparisons rapidly identify the important metabolisms employed by the microbes in different environments.


PLOS ONE | 2008

Microbial Ecology of Four Coral Atolls in the Northern Line Islands

Elizabeth A. Dinsdale; Olga Pantos; Steven Smriga; Robert Edwards; Florence Angly; Linda Wegley; Mark Hatay; Dana Hall; Elysa Brown; Matthew Haynes; Lutz Krause; Enric Sala; Stuart A. Sandin; Rebecca Vega Thurber; Bette L. Willis; Farooq Azam; Nancy Knowlton; Forest Rohwer

Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the worlds most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.


Nature Protocols | 2009

Laboratory procedures to generate viral metagenomes

Rebecca Vega Thurber; Matthew Haynes; Mya Breitbart; Linda Wegley; Forest Rohwer

This collection of laboratory protocols describes the steps to collect viruses from various samples with the specific aim of generating viral metagenome sequence libraries (viromes). Viral metagenomics, the study of uncultured viral nucleic acid sequences from different biomes, relies on several concentration, purification, extraction, sequencing and heuristic bioinformatic methods. No single technique can provide an all-inclusive approach, and therefore the protocols presented here will be discussed in terms of hypothetical projects. However, care must be taken to individualize each step depending on the source and type of viral-particles. This protocol is a description of the processes we have successfully used to: (i) concentrate viral particles from various types of samples, (ii) eliminate contaminating cells and free nucleic acids and (iii) extract, amplify and purify viral nucleic acids. Overall, a sample can be processed to isolate viral nucleic acids suitable for high-throughput sequencing in ∼1 week.


PLOS ONE | 2009

Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

Dana Willner; Mike Furlan; Matthew Haynes; Robert Schmieder; Florent E. Angly; Joás L. da Silva; Sassan Tammadoni; Bahador Nosrat; Douglas Conrad; Forest Rohwer

The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.


The ISME Journal | 2010

Viral and microbial community dynamics in four aquatic environments.

Beltran Rodriguez-Brito; Linlin Li; Linda Wegley; Mike Furlan; Florent E. Angly; Mya Breitbart; John Buchanan; Christelle Desnues; Elizabeth A. Dinsdale; Robert Edwards; Ben Felts; Matthew Haynes; Hong Liu; David A. Lipson; Joseph M. Mahaffy; Anna Belen Martin-Cuadrado; Alex Mira; Jim Nulton; Lejla Pašić; Steve Rayhawk; Jennifer Rodriguez-Mueller; Francisco Rodriguez-Valera; Peter Salamon; Shailaja Srinagesh; Tron Frede Thingstad; Tuong Tran; Rebecca Vega Thurber; Dana Willner; Merry Youle; Forest Rohwer

The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.


Nature | 2008

Biodiversity and biogeography of phages in modern stromatolites and thrombolites

Christelle Desnues; Beltran Rodriguez-Brito; Steve Rayhawk; Scott T. Kelley; Tuong Tran; Matthew Haynes; Hong Liu; Mike Furlan; Linda Wegley; Betty Chau; Yijun Ruan; Dana Hall; Florent E. Angly; Robert Edwards; Linlin Li; Rebecca Vega Thurber; R. Pamela Reid; Janet L. Siefert; Valeria Souza; David L. Valentine; Brandon K. Swan; Mya Breitbart; Forest Rohwer

Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.


Research in Microbiology | 2008

Viral diversity and dynamics in an infant gut

Mya Breitbart; Matthew Haynes; Scott T. Kelley; Florent E. Angly; Robert Edwards; Ben Felts; Joseph M. Mahaffy; Jennifer Mueller; James Nulton; Steve Rayhawk; Beltran Rodriguez-Brito; Peter Salamon; Forest Rohwer

Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infants gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between 1 and 2 weeks of age.

Collaboration


Dive into the Matthew Haynes's collaboration.

Top Co-Authors

Avatar

Forest Rohwer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Mike Furlan

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Robert Edwards

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mya Breitbart

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Linda Wegley

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Robert Schmieder

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Yan Wei Lim

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana Willner

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge