Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Hind is active.

Publication


Featured researches published by Matthew Hind.


Thorax | 2012

Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomised controlled trial

Patrick Murphy; Craig Davidson; Matthew Hind; Adrian J. Williams; Nicholas S. Hopkinson; John Moxham; Michael I. Polkey; Nicholas Hart

Introduction Automatic titration modes of non-invasive ventilation, including average volume assured pressure support (AVAPS), are hybrid technologies that target a set volume by automated adjustment of pressure support (PS). These automated modes could offer potential advantages over fixed level PS, in particular, in patients who are super obese. Methods Consecutive patients with obesity hypoventilation syndrome were enrolled in a two-centre prospective single-blind randomised controlled trial of AVAPS versus fixed-level PS using a strict protocolised setup. Measurements The primary outcome was change in daytime arterial PCO2 (PaCO2) at 3 months. Body composition, physical activity (7-day actigraphy) and health-related quality of life (severe respiratory insufficiency questionnaire, SRI) were secondary outcome measures. Results 50 patients (body mass index 50±7 kg/m2; 55±11 years; 53% men) were enrolled with a mean PaCO2 of 6.9±0.8 kPa and SRI of 53±17. 46 patients (23 AVAPS and 23 PS) completed the trial. At 3 months, improvements in PaCO2 were observed in both groups (AVAPS ∆0.6 kPa, 95% CI 0.2 to 1.1, p<0.01 vs PS ∆0.6 kPa, 95% CI 0.1 to 1.1, p=0.02) but no between-group difference (∆−0.1 kPa, 95% CI −0.7 to 0.6, p=0.87). SRI also improved in both groups (AVAPS ∆11, 95% CI 6 to 17, p<0.001 vs PS ∆7, 95% CI 1 to 12, p=0.02; between groups ∆5, 95% CI −3 to 12, p=0.21). Secondary analysis of both groups combined showed improvements in daytime physical activity that correlated with reduction in fat mass (r=0.48; p=0.01). Conclusion The study demonstrated no differences between automated AVAPS mode and fixed-level PS mode using a strict protocolised setup in patients who were super obese. The data suggest that the management of sleep-disordered breathing may enhance daytime activity and promote weight loss in super-obese patients. Trial registration details available at http://www.controlled-trials.com/ISRCTN63940700


The Lancet | 2015

Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial

Claire Davey; Zaid Zoumot; Simon Jordan; William McNulty; Dennis H Carr; Matthew Hind; David M. Hansell; Michael B. Rubens; Winston Banya; Michael I. Polkey; Pallav L. Shah; Nicholas S. Hopkinson

BACKGROUND Lung volume reduction surgery improves survival in selected patients with emphysema, and has generated interest in bronchoscopic approaches that might achieve the same effect with less morbidity and mortality. Previous trials with endobronchial valves have yielded modest group benefits because when collateral ventilation is present it prevents lobar atelectasis. METHODS We did a single-centre, double-blind sham-controlled trial in patients with both heterogeneous emphysema and a target lobe with intact interlobar fissures on CT of the thorax. We enrolled stable outpatients with chronic obstructive pulmonary disease who had a forced expiratory volume in 1 s (FEV1) of less than 50% predicted, significant hyperinflation (total lung capacity >100% and residual volume >150%), a restricted exercise capacity (6 min walking distance <450 m), and substantial breathlessness (MRC dyspnoea score ≥3). Participants were randomised (1:1) by computer-generated sequence to receive either valves placed to achieve unilateral lobar occlusion (bronchoscopic lung volume reduction) or a bronchoscopy with sham valve placement (control). Patients and researchers were masked to treatment allocation. The study was powered to detect a 15% improvement in the primary endpoint, the FEV1 3 months after the procedure. Analysis was on an intention-to-treat basis. The trial is registered at controlled-trials.com, ISRCTN04761234. FINDINGS 50 patients (62% male, FEV1 [% predicted] mean 31·7% [SD 10·2]) were enrolled to receive valves (n=25) or sham valve placement (control, n=25) between March 1, 2012, and Sept 30, 2013. In the bronchoscopic lung volume reduction group, FEV1 increased by a median 8·77% (IQR 2·27-35·85) versus 2·88% (0-8·51) in the control group (Mann-Whitney p=0·0326). There were two deaths in the bronchoscopic lung volume reduction group and one control patient was unable to attend for follow-up assessment because of a prolonged pneumothorax. INTERPRETATION Unilateral lobar occlusion with endobronchial valves in patients with heterogeneous emphysema and intact interlobar fissures produces significant improvements in lung function. There is a risk of significant complications and further trials are needed that compare valve placement with lung volume reduction surgery. FUNDING Efficacy and Mechanism Evaluation Programme, funded by the Medical Research Council (MRC) and managed by the National Institute for Health Research (NIHR) on behalf of the MRC-NIHR partnership.


Disease Models & Mechanisms | 2011

Human models of acute lung injury

Alastair Proudfoot; Daniel F. McAuley; Mark Griffiths; Matthew Hind

Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.


Thorax | 2009

Retinoid induction of alveolar regeneration: from mice to man?

Matthew Hind; Åsa Gilthorpe; Stinchcombe S; Malcolm Maden

The use of retinoids to induce human lung regeneration is under investigation in a number of studies in patients with chronic obstructive pulmonary disease (COPD). Retinoic acid (RA) has complex pleiotropic functions during vertebrate patterning and development and can induce regeneration in a number of different organ systems. Studies of retinoid signalling during lung development might provide a molecular basis to explain pharmacological induction of alveolar regeneration in adult models of lung disease. In this review the role of endogenous RA signalling during alveologenesis is explored and data suggesting that a number of exogenous retinoids can induce regeneration in the adult lung are discussed. Current controversies in this area are highlighted and a hypothesis of lung regeneration is put forward. Understanding the cellular and molecular mechanisms of induction of regeneration will be central for effective translation into patients with lung disease and may reveal novel insights into the pathogenesis of alveolar disease and senescence.


British Journal of Pharmacology | 2011

Is a regenerative approach viable for the treatment of COPD

Matthew Hind; Malcolm Maden

Degenerative lung diseases such as chronic obstructive pulmonary disease (COPD) are common with huge worldwide morbidity. Anti‐inflammatory drug development strategies have proved disappointing and current treatment is aimed at symptomatic relief. Only lung transplantation with all its attendant difficulties offers hope of cure and the outlook for affected patients is bleak. Lung regeneration therapies aim to reverse the structural and functional deficits in COPD either by delivery of exogenous lung cells to replace lost tissue, delivery of exogenous stem cells to induce a local paracrine effect probably through an anti‐inflammatory action or by the administration of small molecules to stimulate the endogenous regenerative ability of lung cells. In animal models of emphysema and disrupted alveolar development each of these strategies has shown some success but there are potential tumour‐inducing dangers with a cellular approach. Small molecules such as all‐trans retinoic acid have been successful in animal models although the mechanism is not completely understood. There are currently two Pharma‐sponsored trials in progress concerning patients with COPD, one of a specific retinoic acid receptor gamma agonist and another using mesenchymal stem cells.


Current Opinion in Critical Care | 2011

Translational research: what does it mean, what has it delivered and what might it deliver?

Alastair Proudfoot; Daniel F. McAuley; Matthew Hind; Mark Griffiths

Purpose of reviewIn this article, we review recent developments in translational research in the fields of acute lung injury, acute kidney injury and sepsis with a focus on emerging biomarkers and outline future advances in the field. Recent findingsThere is currently a significant and unmet need for high quality translational research in critical care. The emergence of ‘-omics’ technologies and sophisticated imaging techniques have resulted in a rapid growth of emerging biomarkers. Biomarkers would ideally provide early and reliable endpoints for proof of concept in clinical trials and inform clinical decision making through earlier and more precise diagnosis and risk stratification. SummaryDespite significant investment in basic science and time-consuming clinical trials, the majority of pharmacological interventions developed for critical illness have yet to translate into measurable clinical benefit. Future validation and qualification of emerging biomarkers allied to advances in pharmacogenomic profiling have the potential to provide valuable clinical information while accurately phenotyping patients enrolled in future clinical trials.


Disease Models & Mechanisms | 2017

Heterozygous Vangl2(Looptail) mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

Thanushiyan Poobalasingam; Laura L. Yates; Simone A. Walker; Miguel Pereira; Nina Y. Gross; Akmol Ali; Maria Kolatsi-Joannou; Marjo-Riitta Järvelin; Juha Pekkanen; Eugenia Papakrivopoulou; David A. Long; Mark Griffiths; Darcy E. Wagner; Melanie Königshoff; Matthew Hind; Cosetta Minelli; Charlotte H. Dean

ABSTRACT Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema. Summary: Manipulating the PCP pathway may provide new approaches to treat damaged lung tissue.


Thorax | 2017

Endobronchial valves for patients with heterogeneous emphysema and without interlobar collateral ventilation: open label treatment following the BeLieVeR-HIFi study

Zaid Zoumot; Claire Davey; Simon Jordan; William McNulty; Denis H Carr; Matthew Hind; Michael I. Polkey; Pallav L. Shah; Nicholas S. Hopkinson

Outcomes in early trials of bronchoscopic lung volume reduction using endobronchial valves for the treatment of patients with advanced emphysema were inconsistent. However improvements in patient selection with focus on excluding those with interlobar collateral ventilation and homogeneous emphysema resulted in significant benefits in the BeLieVeR-HIFi study compared with sham treated controls. In this manuscript we present data from the control patients in the BeLieVeR-HIFi study who went on to have open label endobronchial valve treatment after completion of the clinical trial (n=12), combined with data from those in the treatment arm who did not have collateral ventilation (n=19). Three months after treatment FEV1 increased by 27.3 (36.4)%, residual volume reduced by 0.49 (0.76) L, the 6 min walk distance increased by 32.6 (68.7) m and the St George Respiratory Questionnaire for COPD score improved by 8.2 (20.2) points. These data extend the evidence for endobronchial valve placement in appropriately selected patients with COPD. Trial registration number: ISRCTN04761234; Results.


Thorax | 2018

Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury

Alastair Proudfoot; Andrew I. Bayliffe; Cecilia M O’Kane; Tracey J. Wright; Adrian Serone; Philippe Bareille; Vanessa Brown; Umar Hamid; Younan Chen; Robert Wilson; Joanna Cordy; Peter J. Morley; Ruud de Wildt; Stuart Elborn; Matthew Hind; Edwin R. Chilvers; Mark Griffiths; Charlotte Summers; Daniel F. McAuley

Background Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine with both injurious and protective functions, which are thought to diverge at the level of its two cell surface receptors, TNFR1 and TNFR2. In the setting of acute injury, selective inhibition of TNFR1 is predicted to attenuate the cell death and inflammation associated with TNF-α, while sparing or potentiating the protective effects of TNFR2 signalling. We developed a potent and selective antagonist of TNFR1 (GSK1995057) using a novel domain antibody (dAb) therapeutic and assessed its efficacy in vitro, in vivo and in a clinical trial involving healthy human subjects. Methods We investigated the in vitro effects of GSK1995057 on human pulmonary microvascular endothelial cells (HMVEC-L) and then assessed the effects of pretreatment with nebulised GSK1995057 in a non-human primate model of acute lung injury. We then tested translation to humans by investigating the effects of a single nebulised dose of GSK1995057 in healthy humans (n=37) in a randomised controlled clinical trial in which subjects were subsequently exposed to inhaled endotoxin. Results Selective inhibition of TNFR1 signalling potently inhibited cytokine and neutrophil adhesion molecule expression in activated HMVEC-L monolayers in vitro (P<0.01 and P<0.001, respectively), and also significantly attenuated inflammation and signs of lung injury in non-human primates (P<0.01 in all cases). In a randomised, placebo-controlled trial of nebulised GSK1995057 in 37 healthy humans challenged with a low dose of inhaled endotoxin, treatment with GSK1995057 attenuated pulmonary neutrophilia, inflammatory cytokine release (P<0.01 in all cases) and signs of endothelial injury (P<0.05) in bronchoalveolar lavage and serum samples. Conclusion These data support the potential for pulmonary delivery of a selective TNFR1 dAb as a novel therapeutic approach for the prevention of acute respiratory distress syndrome. Trial registration number ClinicalTrials.gov NCT01587807.


PLOS ONE | 2016

Association of Forced Vital Capacity with the Developmental Gene NCOR2

Cosetta Minelli; Charlotte H. Dean; Matthew Hind; Alexessander Couto Alves; André Amaral; Valérie Siroux; Ville Huikari; María Soler Artigas; David Evans; Daan W. Loth; Yohan Bossé; Dirkje S. Postma; Don D. Sin; John F. Thompson; Florence Demenais; John Henderson; Emmanuelle Bouzigon; Deborah Jarvis; Marjo-Riitta Järvelin; Peter Burney

Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 children (ALSPAC). Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium), with further functional investigation performed using public epigenomic profiling data (ENCODE). Results NCOR2-rs12708369 showed strong replication in children (p = 0.0002), with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036) and children (p = 0.045), while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026). The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561. Conclusions We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing to a role of vitamin A metabolism in the regulation of FVC. Our findings also support SERPINE2, a COPD gene with weak previous evidence of association with FVC, and suggest WNT16 as a further promising candidate.

Collaboration


Dive into the Matthew Hind's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Jordan

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Alastair Proudfoot

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charlotte H. Dean

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge