Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew J. Brody is active.

Publication


Featured researches published by Matthew J. Brody.


Nature Communications | 2016

Genetic lineage tracing defines myofibroblast origin and function in the injured heart

Onur Kanisicak; Hadi Khalil; Malina J. Ivey; Jason Karch; Bryan D. Maliken; Robert N. Correll; Matthew J. Brody; Suh-Chin J. Lin; Bruce J. Aronow; Michelle D. Tallquist; Jeffery D. Molkentin

Cardiac fibroblasts convert to myofibroblasts with injury to mediate healing after acute myocardial infarction (MI) and to mediate long-standing fibrosis with chronic disease. Myofibroblasts remain a poorly defined cell type in terms of their origins and functional effects in vivo. Here we generate Postn (periostin) gene-targeted mice containing a tamoxifen-inducible Cre for cellular lineage-tracing analysis. This Postn allele identifies essentially all myofibroblasts within the heart and multiple other tissues. Lineage tracing with four additional Cre-expressing mouse lines shows that periostin-expressing myofibroblasts in the heart derive from tissue-resident fibroblasts of the Tcf21 lineage, but not endothelial, immune/myeloid or smooth muscle cells. Deletion of periostin+ myofibroblasts reduces collagen production and scar formation after MI. Periostin-traced myofibroblasts also revert back to a less-activated state upon injury resolution. Our results define the myofibroblast as a periostin-expressing cell type necessary for adaptive healing and fibrosis in the heart, which arises from Tcf21+ tissue-resident fibroblasts.


PLOS ONE | 2015

Necroptosis Interfaces with MOMP and the MPTP in Mediating Cell Death.

Jason Karch; Onur Kanisicak; Matthew J. Brody; Michelle A. Sargent; Demetria Michael; Jeffery D. Molkentin

During apoptosis the pro-death Bcl-2 family members Bax and Bak induce mitochondrial outer membrane permeabilization (MOMP) to mediate cell death. Recently, it was shown that Bax and Bak are also required for mitochondrial permeability transition pore (MPTP)-dependent necrosis, where, in their non-oligomeric state, they enhance permeability characteristics of the outer mitochondrial membrane. Necroptosis is another form of regulated necrosis involving the death receptors and receptor interacting protein kinases (RIP proteins, by Ripk genes). Here, we show cells or mice deficient for Bax/Bak or cyclophilin D, a protein that regulates MPTP opening, are resistant to cell death induced by necroptotic mediators. We show that Bax/Bak oligomerization is required for necroptotic cell death and that this oligomerization reinforces MPTP opening. Mechanistically, we observe mixed lineage kinase domain-like (MLKL) protein and cofilin-1 translocation to the mitochondria following necroptosis induction, while expression of the mitochondrial matrix isoform of the antiapoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), is significantly reduced. Some of these effects are lost with necroptosis inhibition in Bax/Bak1 double null, Ppif-/-, or Ripk3-/- fibroblasts. Hence, downstream mechanisms of cell death induced by necroptotic stimuli utilize both Bax/Bak to generate apoptotic pores in the outer mitochondrial membrane as well as MPTP opening in association with known mitochondrial death modifying proteins.


Toxicological Sciences | 2010

Altered cardiac function and ventricular septal defect in avian embryos exposed to low-dose trichloroethylene.

Echoleah S. Rufer; Timothy A. Hacker; George R. Flentke; Victoria J. Drake; Matthew J. Brody; John Lough; Susan M. Smith

Trichloroethylene (TCE) is the most frequently reported organic groundwater contaminant in the United States. It is controversial whether gestational TCE exposure causes congenital heart defects. The basis for TCEs proposed cardiac teratogenicity is not well understood. We previously showed that chick embryos exposed to 8 ppb TCE during cardiac morphogenesis have reduced cardiac output and increased mortality. To further investigate TCEs cardioteratogenic potential, we exposed in ovo chick embryos to TCE and evaluated the heart thereafter. Significant mortality was observed following TCE exposures of 8-400 ppb during a narrow developmental period (Hamburger-Hamilton [HH] stages 15-20, embryo day ED2.3-3.5) that is characterized by myocardial expansion, secondary heart looping, and endocardial cushion formation. Of the embryos that died, most did so between ED5.5 and ED6.5. Echocardiography of embryos at ED5.5 found that TCE-exposed hearts displayed significant functional and morphological heterogeneity affecting heart rate, left ventricular mass, and wall thickness. Individual embryos were identified with cardiac hypertrophy as well as with hypoplasia. Chick embryos exposed to 8 ppb TCE at HH17 that survived to hatch exhibited a high incidence (38%, p < 0.01, n = 16) of muscular ventricular septal defects (VSDs) as detected by echocardiography and confirmed by gross dissection; no VSDs were found in controls (n = 14). The TCE-induced VSDs may be secondary to functional impairments that alter cardiac hemodynamics and subsequent ventricular foramen closure, an interpretation consistent with recent demonstrations that TCE impairs calcium handling in cardiomyocytes. These data demonstrate that TCE is a cardiac teratogen for chick.


PLOS ONE | 2012

Ablation of the Cardiac-Specific Gene Leucine-Rich Repeat Containing 10 (Lrrc10) Results in Dilated Cardiomyopathy

Matthew J. Brody; Timothy A. Hacker; Jitandrakumar R. Patel; Li Feng; Junichi Sadoshima; Sergei G. Tevosian; Ravi C. Balijepalli; Richard L. Moss; Youngsook Lee

Leucine-rich repeat containing 10 (LRRC10) is a cardiac-specific protein exclusively expressed in embryonic and adult cardiomyocytes. However, the role of LRRC10 in mammalian cardiac physiology remains unknown. To determine if LRRC10 is critical for cardiac function, Lrrc10-null (Lrrc10−/−) mice were analyzed. Lrrc10− /− mice exhibit prenatal systolic dysfunction and dilated cardiomyopathy in postnatal life. Importantly, Lrrc10−/− mice have diminished cardiac performance in utero, prior to ventricular dilation observed in young adults. We demonstrate that LRRC10 endogenously interacts with α-actinin and α-actin in the heart and all actin isoforms in vitro. Gene expression profiling of embryonic Lrrc10−/− hearts identified pathways and transcripts involved in regulation of the actin cytoskeleton to be significantly upregulated, implicating dysregulation of the actin cytoskeleton as an early defective molecular signal in the absence of LRRC10. In contrast, microarray analyses of adult Lrrc10−/− hearts identified upregulation of oxidative phosphorylation and cardiac muscle contraction pathways during the progression of dilated cardiomyopathy. Analyses of hypertrophic signal transduction pathways indicate increased active forms of Akt and PKCε in adult Lrrc10−/− hearts. Taken together, our data demonstrate that LRRC10 is essential for proper mammalian cardiac function. We identify Lrrc10 as a novel dilated cardiomyopathy candidate gene and the Lrrc10−/− mouse model as a unique system to investigate pediatric cardiomyopathy.


Journal of Molecular and Cellular Cardiology | 2013

Lrrc10 is a novel cardiac-specific target gene of Nkx2-5 and GATA4

Matthew J. Brody; Eunjin Cho; Matthew R. Mysliwiec; Tae-gyun Kim; Clayton D. Carlson; Kyu-Ho Lee; Youngsook Lee

Cardiac gene expression is precisely regulated and its perturbation causes developmental defects and heart disease. Leucine-rich repeat containing 10 (Lrrc10) is a cardiac-specific factor that is crucial for proper cardiac development and deletion of Lrrc10 in mice results in dilated cardiomyopathy. However, the mechanisms regulating Lrrc10 expression in cardiomyocytes remain unknown. Therefore, we set out to determine trans-acting factors and cis-elements critical for mediating Lrrc10 expression. We identify Lrrc10 as a transcriptional target of Nkx2-5 and GATA4. The Lrrc10 promoter region contains two highly conserved cardiac regulatory elements, which are functional in cardiomyocytes but not in fibroblasts. In vivo, Nkx2-5 and GATA4 endogenously occupy the proximal and distal cardiac regulatory elements of Lrrc10 in the heart. Moreover, embryonic hearts of Nkx2-5 knockout mice have dramatically reduced expression of Lrrc10. These data demonstrate the importance of Nkx2-5 and GATA4 in regulation of Lrrc10 expression in vivo. The proximal cardiac regulatory element located at around -200bp is synergistically activated by Nkx2-5 and GATA4 while the distal cardiac regulatory element present around -3kb requires SRF in addition to Nkx2-5 and GATA4 for synergistic activation. Mutational analyses identify a pair of adjacent Nkx2-5 and GATA binding sites within the proximal cardiac regulatory element that are necessary to induce expression of Lrrc10. In contrast, only the GATA site is functional in the distal regulatory element. Taken together, our data demonstrate that the transcription factors Nkx2-5 and GATA4 cooperatively regulate cardiac-specific expression of Lrrc10.


eLife | 2017

Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak

Jason Karch; Tobias G. Schips; Bryan D. Maliken; Matthew J. Brody; Michelle A. Sargent; Onur Kanisicak; Jeffery D. Molkentin

Cells deficient in the pro-death Bcl-2 family members Bax and Bak are known to be resistant to apoptotic cell death, and previous we have shown that these two effectors are also needed for mitochondrial-dependent cellular necrosis (Karch et al., 2013). Here we show that mouse embryonic fibroblasts deficient in Bax/Bak1 are resistant to the third major form of cell death associated with autophagy through a mechanism involving lysosome permeability. Indeed, specifically targeting Bax only to the lysosome restores autophagic cell death in Bax/Bak1 null cells. Moreover, a monomeric-only mutant form of Bax is sufficient to increase lysosomal membrane permeability and restore autophagic cell death in Bax/Bak1 double-deleted mouse embryonic fibroblasts. Finally, increasing lysosomal permeability through a lysomotropic detergent in cells devoid of Bax/Bak1 restores autophagic cell death, collectively indicting that Bax/Bak integrate all major forms of cell death through direct effects on membrane permeability of multiple intracellular organelles.


eLife | 2016

Thrombospondin expression in myofibers stabilizes muscle membranes

Davy Vanhoutte; Tobias G. Schips; Jennifer Q. Kwong; Jennifer Davis; Andoria Tjondrokoesoemo; Matthew J. Brody; Michelle A. Sargent; Onur Kanisicak; Hong Yi; Quan Q. Gao; Joseph E. Rabinowitz; Talila Volk; Elizabeth M. McNally; Jeffery D. Molkentin

Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of βPS integrin. This functional conservation emphasizes the fundamental importance of Thbs’ as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy. DOI: http://dx.doi.org/10.7554/eLife.17589.001


Molecular and Cellular Biology | 2015

Dissection of Thrombospondin-4 Domains Involved in Intracellular Adaptive Endoplasmic Reticulum Stress-Responsive Signaling.

Matthew J. Brody; Tobias G. Schips; Davy Vanhoutte; Onur Kanisicak; Jason Karch; Bryan D. Maliken; N. Scott Blair; Michelle A. Sargent; Vikram Prasad; Jeffery D. Molkentin

ABSTRACT Thrombospondins are a family of stress-inducible secreted glycoproteins that underlie tissue remodeling. We recently reported that thrombospondin-4 (Thbs4) has a critical intracellular function, regulating the adaptive endoplasmic reticulum (ER) stress pathway through activating transcription factor 6α (Atf6α). In the present study, we dissected the domains of Thbs4 that mediate interactions with ER proteins, such as BiP (Grp78) and Atf6α, and the domains mediating activation of the ER stress response. Functionally, Thbs4 localized to the ER and post-ER vesicles and was actively secreted from cardiomyocytes, as were the type III repeat (T3R) and TSP-C domains, while the LamG domain localized to the Golgi apparatus. We also mutated the major calcium-binding motifs within the T3R domain of full-length Thbs4, causing ER retention and secretion blockade. The T3R and TSP-C domains as well as wild-type Thbs4 and the calcium-binding mutant interacted with Atf6α, induced an adaptive ER stress response, and caused expansion of intracellular vesicles. In contrast, overexpression of a related secreted oligomeric glycoprotein, Nell2, which lacks only the T3R and TSP-C domains, did not cause these effects. Finally, deletion of Atf6α abrogated Thbs4-induced vesicular expansion. Taken together, these data identify the critical intracellular functional domains of Thbs4, which was formerly thought to have only extracellular functions.


American Journal of Physiology-heart and Circulatory Physiology | 2016

LRRC10 is required to maintain cardiac function in response to pressure overload

Matthew J. Brody; Li Feng; Adrian C. Grimes; Timothy A. Hacker; Timothy M. Olson; Timothy J. Kamp; Ravi C. Balijepalli; Youngsook Lee

We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis.


Frontiers in Physiology | 2016

The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy

Matthew J. Brody; Youngsook Lee

Leucine-rich repeat containing protein 10 (LRRC10) is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC) protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM) and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease.

Collaboration


Dive into the Matthew J. Brody's collaboration.

Top Co-Authors

Avatar

Jeffery D. Molkentin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason Karch

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Sargent

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Onur Kanisicak

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tobias G. Schips

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Youngsook Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Li Feng

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ravi C. Balijepalli

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bryan D. Maliken

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Courtney Reynolds

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge