Matthew J. Hancock
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew J. Hancock.
Nature Materials | 2010
Niranjan Malvadkar; Matthew J. Hancock; Koray Sekeroglu; Walter J. Dressick; Melik C. Demirel
Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the films anisotropic wetting behaviour as a function of measurable film morphology parameters.
Small | 2010
Behnam Zamanian; Mahdokht Masaeli; Jason W. Nichol; Masoud Khabiry; Matthew J. Hancock; Hojae Bae; Ali Khademhosseini
Cell-laden hydrogels show great promise for creating engineered tissues. However, a major shortcoming with these systems has been the inability to fabricate structures with controlled micrometer-scale features on a biologically relevant length scale. In this Full Paper, a rapid method is demonstrated for creating centimeter-scale, cell-laden hydrogels through the assembly of shape-controlled microgels or a liquid-air interface. Cell-laden microgels of specific shapes are randomly placed on the surface of a high-density, hydrophobic solution, induced to aggregate and then crosslinked into macroscale tissue-like structures. The resulting assemblies are cell-laden hydrogel sheets consisting of tightly packed, ordered microgel units. In addition, a hierarchical approach creates complex multigel building blocks, which are then assembled into tissues with precise spatial control over the cell distribution. The results demonstrate that forces at an air-liquid interface can be used to self-assemble spatially controllable, cocultured tissue-like structures.
Biomaterials | 2010
Yanan Du; Matthew J. Hancock; Jiankang He; Jose L. Villa-Uribe; Ben Wang; Donald M. Cropek; Ali Khademhosseini
Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethylene-glycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interactions.
Lab on a Chip | 2011
Yun-Ho Jang; Matthew J. Hancock; Sang Bok Kim; Šeila Selimović; Woo Young Sim; Hojae Bae; Ali Khademhosseini
High-throughput preparation of multi-component solutions is an integral process in biology, chemistry and materials science for screening, diagnostics and analysis. Compact microfluidic systems enable such processing with low reagent volumes and rapid testing. Here we present a microfluidic device that incorporates two gradient generators, a tree-like generator and a new microfluidic active injection system, interfaced by intermediate solution reservoirs to generate diluted combinations of input solutions within an 8 × 8 or 10 × 10 array of isolated test chambers. Three input solutions were fed into the device, two to the tree-like gradient generator and one to pre-fill the test chamber array. The relative concentrations of these three input solutions in the test chambers completely characterized device behaviour and were controlled by the number of injection cycles and the flow rate. Device behaviour was modelled by computational fluid dynamics simulations and an approximate analytic formula. The device may be used for two-dimensional (2D) combinatorial dilution by adding two solutions in different relative concentrations to each of its three inputs. By appropriate choice of the two-component input solutions, test chamber concentrations that span any triangle in 2D concentration space may be obtained. In particular, explicit inputs are given for a coarse screening of a large region in concentration space followed by a more refined screening of a smaller region, including alternate inputs that span the same concentration region but with different distributions. The ability to probe arbitrary subspaces of concentration space and to control the distribution of discrete test points within those subspaces makes the device of potential benefit for high-throughput cell biology studies and drug screening.
Small | 2009
Masoud Khabiry; Bong Geun Chung; Matthew J. Hancock; Harish Chandra Soundararajan; Yanan Du; Donald M. Cropek; Won Gu Lee; Ali Khademhosseini
Microstructures that generate shear-protected regions in microchannels can rapidly immobilize cells for cell-based biosensing and drug screening. Here, a two-step fabrication method is used to generate double microgrooves with various depth ratios to achieve controlled double-level cell patterning while still providing shear protection. Six microgroove geometries are fabricated with different groove widths and depth ratios. Two modes of cell docking are observed: cells docked upstream in sufficiently deep and narrow grooves, and downstream in shallow, wide grooves. Computational flow simulations link the groove geometry and bottom shear stress to the experimental cell docking patterns. Analysis of the experimental cell retention in the double grooves demonstrates its linear dependence on inlet flow speed, with slope inversely proportional to the sheltering provided by the groove geometry. Thus, double-grooved microstructures in microfluidic channels provide shear-protected regions for cell docking and immobilization and appear promising for cell-based biosensing and drug discovery.
Journal of Fluid Mechanics | 2003
Chiang C. Mei; Matthew J. Hancock
We study the effects of multiple scattering of slowly modulated water waves by a weakly random bathymetry. The combined effects of weak nonlinearity, dispersion and random irregularities are treated together to yield a nonlinear Schrodinger equation with a complex damping term. Implications for localization and side-band instability are discussed. Transmission and nonlinear evolution of a wave packet past a finite strip of disorder is examined.
Journal of Biomedical Materials Research Part A | 2009
Lifeng Kang; Matthew J. Hancock; Mark D. Brigham; Ali Khademhosseini
Cell patterning is useful for a variety of biological applications such as tissue engineering and drug discovery. In particular, the ability to localize cells within distinct fluids is beneficial for a variety of applications ranging from microencapsulation to high-throughput analysis. However, despite much progress, cell immobilization and maintenance within patterned microscale droplets remains a challenge. In particular, no method currently exists to rapidly seed cells into microwell arrays in a controllable and reliable manner. In this study, we present a simple wiping technique to localize cells within arrays of polymeric microwells. This robust method produces cell seeding densities that vary consistently with microwell geometry and cell concentration. Moreover, we develop a simple theoretical model to accurately predict cell seeding density and seeding efficiency in terms of the design parameters of the microwell array and the cell density. This short-term cell patterning approach is an enabling tool to develop new high-throughput screening technologies that utilize microwell arrays containing cells for screening applications.
Small | 2011
Matthew J. Hancock; Jiankang He; João F. Mano; Ali Khademhosseini
A simple and inexpensive method is presented employing passive mechanisms to generate centimeters-long gradients of molecules and particles in under a second with only a coated glass slide and a micropipette. A drop of solution is pipetted onto a fluid stripe held in place on a glass slide by a hydrophobic boundary. The resulting difference in curvature pressure drives the flow and creates a concentration gradient by convection. Experiments and theoretical models characterize the flows and gradient profiles and their dependence on the fluid volumes, properties, and stripe geometry. A bench-top rapid prototyping method is outlined to allow the user to design and fabricate the coated slides using only tape and hydrophobic spray. The rapid prototyping method is compatible with microwell arrays, allowing soluble gradients to be applied to cells in shear-protected microwells. The methods simplicity makes it accessible to virtually any researcher or student and its use of passive mechanisms makes it ideal for field use and compatible with point-of-care and global health initiatives.
Small | 2012
Matthew J. Hancock; Fumiki Yanagawa; Yun-Ho Jang; Jiankang He; Nezamoddin N. Kachouie; Hirokazu Kaji; Ali Khademhosseini
A simple technique is presented for controlling the shapes of micro- and nanodrops by patterning surfaces with special hydrophilic regions surrounded by hydrophobic boundaries. Finite element method simulations link the shape of the hydrophilic regions to that of the droplets. Shaped droplets are used to controllably pattern planar surfaces and microwell arrays with microparticles and cells at the micro- and macroscales. Droplets containing suspended sedimenting particles, initially at uniform concentration, deposit more particles under deeper regions than under shallow regions. The resulting surface concentration is thus proportional to the local fluid depth and agrees well with the measured and simulated droplet profiles. A second application is also highlighted in which shaped droplets of prepolymer solution are crosslinked to synthesize microgels with tailored 3D geometry.
Lab on a Chip | 2012
Francesco Piraino; Gulden Camci-Unal; Matthew J. Hancock; Marco Rasponi; Ali Khademhosseini
This technical note describes a new bench-top method for producing anisotropic hydrogels composed of gradient layers of soluble factors, particles, polymer concentrations or material properties. Each gradient layer was produced by a previous gradient method in which a droplet of one precursor solution was added to a thin layer of a second solution. The ensuing rapid capillary flow along the open channel generated a gradient precursor solution, which was then crosslinked to form a gradient gel. Repeating these steps allowed a layered gel to be iteratively constructed with as many gradient layers as desired. This technique renders the synthesis of multi-layered gradient gels accessible to virtually any researcher and should help simplify the production of more biologically relevant cellular microenvironments.