Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew J. Harrington is active.

Publication


Featured researches published by Matthew J. Harrington.


Proceedings of the National Academy of Sciences of the United States of America | 2011

pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli

Niels Holten-Andersen; Matthew J. Harrington; Henrik Birkedal; Bruce P. Lee; Phillip B. Messersmith; Ka Yee C. Lee; J. H. Waite

Growing evidence supports a critical role of metal-ligand coordination in many attributes of biological materials including adhesion, self-assembly, toughness, and hardness without mineralization [Rubin DJ, Miserez A, Waite JH (2010) Advances in Insect Physiology: Insect Integument and Color, eds Jérôme C, Stephen JS (Academic Press, London), pp 75–133]. Coordination between Fe and catechol ligands has recently been correlated to the hardness and high extensibility of the cuticle of mussel byssal threads and proposed to endow self-healing properties [Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Science 328:216–220]. Inspired by the pH jump experienced by proteins during maturation of a mussel byssus secretion, we have developed a simple method to control catechol-Fe3+ interpolymer cross-linking via pH. The resonance Raman signature of catechol-Fe3+ cross-linked polymer gels at high pH was similar to that from native mussel thread cuticle and the gels displayed elastic moduli (G′) that approach covalently cross-linked gels as well as self-healing properties.


Science | 2010

Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings

Matthew J. Harrington; Admir Masic; Niels Holten-Andersen; J. H. Waite; Peter Fratzl

Mussel Fibers While it is possible to make strong fibers or threads from organic materials, most suffer from high wear abrasion. Marine mussels attach themselves to rocky seashores using a series of byssal threads. Despite the constant rubbing caused by the motion of the tides, the threads show high wear resistance. Harrington et al. (p. 216, published online 4 March; see the Perspective by Messersmith) now find that the threads are protected by a proteinaceous outer cuticle that is rich in the amino acid 3,4-dihydroxyphenylalanine (dopa), which is known to be a strong adhesive. The cuticle is also rich in metal ions, primarily Fe3+. The dopa-metal crosslinks helped to form the tough outer coating. Marine mussel byssal threads have an outer coating in which proteins are linked to metal ions. The extensible byssal threads of marine mussels are shielded from abrasion in wave-swept habitats by an outer cuticle that is largely proteinaceous and approximately fivefold harder than the thread core. Threads from several species exhibit granular cuticles containing a protein that is rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (dopa) as well as inorganic ions, notably Fe3+. Granular cuticles exhibit a remarkable combination of high hardness and high extensibility. We explored byssus cuticle chemistry by means of in situ resonance Raman spectroscopy and demonstrated that the cuticle is a polymeric scaffold stabilized by catecholato-iron chelate complexes having an unusual clustered distribution. Consistent with byssal cuticle chemistry and mechanics, we present a model in which dense cross-linking in the granules provides hardness, whereas the less cross-linked matrix provides extensibility.


Journal of Biological Chemistry | 2010

Protein- and Metal-dependent Interactions of a Prominent Protein in Mussel Adhesive Plaques

Dong Soo Hwang; Hongbo Zeng; Admir Masic; Matthew J. Harrington; Jacob N. Israelachvili; J. H. Waite

The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca2+ and Fe3+ induced significant reversible bridging (work of adhesion Wad ≈ 0.3 mJ/m2 to 2.2 mJ/m2) between two films at 0.35 m salinity. The strongest observed Fe3+-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe3+ and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface.


Journal of Structural Biology | 2009

Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus.

Matthew J. Harrington; Himadri S. Gupta; Peter Fratzl; J. Herbert Waite

The byssal threads of the California mussel, Mytilus californianus, are highly hysteretic, elastomeric fibers that collectively perform a holdfast function in wave-swept rocky seashore habitats. Following cyclic loading past the mechanical yield point, threads exhibit a damage-dependent reduction in mechanical performance. However, the distal portion of the byssal thread is capable of recovering initial material properties through a time-dependent healing process in the absence of active cellular metabolism. Byssal threads are composed almost exclusively of multi-domain hybrid collagens known as preCols, which largely determine the mechanical properties of the thread. Here, the structure-property relationships that govern thread mechanical performance are further probed. The molecular rearrangements that occur during yield and damage repair were investigated using time-resolved in situ wide-angle X-ray diffraction (WAXD) coupled with cyclic tensile loading of threads and through thermally enhanced damage-repair studies. Results indicate that the collagen domains in byssal preCols are mechanically protected by the unfolding of sacrificial non-collagenous domains that refold on a slower time-scale. Time-dependent healing is primarily attributed to stochastic recoupling of broken histidine-metal coordination complexes.


Journal of Materials Chemistry B | 2014

Metal-coordination: using one of nature’s tricks to control soft material mechanics

Niels Holten-Andersen; Aditya Jaishankar; Matthew J. Harrington; Dominic E. Fullenkamp; Genevieve DiMarco; Lihong He; Gareth H. McKinley; Phillip B. Messersmith; Ka Yee C. Lee

Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs.


Angewandte Chemie | 2014

The Mechanical Role of Metal Ions in Biogenic Protein‐Based Materials

Elena Degtyar; Matthew J. Harrington; Yael Politi; Peter Fratzl

Protein-metal interactions--traditionally regarded for roles in metabolic processes--are now known to enhance the performance of certain biogenic materials, influencing properties such as hardness, toughness, adhesion, and self-healing. Design principles elucidated through thorough study of such materials are yielding vital insights for the design of biomimetic metallopolymers with industrial and biomedical applications. Recent advances in the understanding of the biological structure-function relationships are highlighted here with a specific focus on materials such as arthropod biting parts, mussel byssal threads, and sandcastle worm cement.


Biomacromolecules | 2008

pH-dependent locking of giant mesogens in fibers drawn from mussel byssal collagens.

Matthew J. Harrington; J. Herbert Waite

Byssal threads are tough collagenous fibers that mussels use to secure themselves against dislodgement by waves in the marine intertidal zone. Here, preCol, a family of hybrid collagens comprising up to 96% of the protein content in certain regions of byssal threads, was purified in mg amounts from mussel foot tissue for the first time. Conditions for drawing preCols into quality fibers ex vivo were investigated. The most important factor affecting fiber formation was the pH of the drawing solution. The morphology and tensile properties of drawn fibers were also characterized and suggest that a liquid crystal mesophase combined with cross-linking by His-metal coordination plays a role in the assembly/mechanics of drawn fibers and likely in native byssal threads as well.


Biomacromolecules | 2012

Reorientation of Cellulose Nanowhiskers in Agarose Hydrogels under Tensile Loading

Anayancy Osorio-Madrazo; Michaela Eder; Markus Rueggeberg; Jitendra Kumar Pandey; Matthew J. Harrington; Yoshiharu Nishiyama; Jean-Luc Putaux; Cyrille Rochas; Ingo Burgert

Agarose hydrogels filled with cellulose nanowhiskers were strained in uniaxial stretching under different humidity conditions. The orientation of the cellulose whiskers was examined before and after testing with an X-ray laboratory source and monitored in situ during loading by synchrotron X-ray diffraction. The aim of this approach was to determine the process parameters for reorienting the cellulose nanowhiskers toward a preferential direction. Results show that a controlled drying of the hydrogel is essential to establish interactions between the matrix and the cellulose nanowhiskers which allow for a stress transfer during stretching and thereby promote their alignment. Rewetting of the sample after reorientation of the cellulose nanowhiskers circumvents a critical increase of stress. This improves the extensibility of the hydrogel and is accompanied by a further moderate alignment of the cellulose nanowhiskers. Following this protocol, cellulose nanowhiskers with an initial random distribution can be reoriented toward a preferential direction, creating anisotropic nanocomposites.


Journal of Materials Chemistry | 2012

Mussel foot protein-1 (mcfp-1) interaction with titania surfaces

Dong Soo Hwang; Matthew J. Harrington; Qiuyi Lu; Admir Masic; Hongbo Zeng; J. H. Waite

Marine mussels utilize a variety of DOPA-rich proteins for purposes of underwater adhesion, as well as for creating hard and flexible surface coatings for their tough and stretchy byssal fibers. In the present study, moderately strong, yet reversible wet adhesion between the protective mussel coating protein, mcfp-1, and amorphous titania was measured with a surface force apparatus (SFA). In parallel, resonance Raman spectroscopy was employed to identify the presence of bidentate DOPA-Ti coordination bonds at the TiO(2)-protein interface, suggesting that catechol-TiO(2) complexation contributes to the observed reversible wet adhesion. These results have important implications for the design of protective coatings on TiO(2).


Biomacromolecules | 2014

Metal-Mediated Molecular Self-Healing in Histidine-Rich Mussel Peptides

Stephan Schmidt; Antje Reinecke; Felix Wojcik; Daniel Pussak; Laura Hartmann; Matthew J. Harrington

Mussels withstand high-energy wave impacts in rocky seashore habitats by fastening tightly to surfaces with tough and self-healing proteinaceous fibers called byssal threads. Thread mechanical behavior is believed to arise from reversibly breakable metal coordination cross-links embedded in histidine-rich protein domains (HRDs) in the principle load-bearing proteins comprising the fibrous thread core. In order to investigate HRD behavior at the molecular level, we have synthesized a histidine-rich peptide derived from mussel proteins (His5-bys) and studied its reversible adhesive self-interaction in the presence and absence of metal ions using PEG-based soft-colloidal probes (SCPs). Adhesion energies of greater than 0.3 mJ/m(2) were measured in the presence of metal ions, and the stiffness of the modified SCPs exhibited a 3-fold increase, whereas no adhesion was observed in the absence of metals. Raman spectroscopy confirmed the presence of metal-coordination via histidine residues by the peptide-supporting the role of His-metal complexes in the mechanical behavior of the byssus.

Collaboration


Dive into the Matthew J. Harrington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Admir Masic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephan Schmidt

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. H. Waite

University of California

View shared research outputs
Top Co-Authors

Avatar

Niels Holten-Andersen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge