Matthew J. Picklo
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew J. Picklo.
Molecular & Cellular Proteomics | 2007
Paul A. Grimsrud; Matthew J. Picklo; Timothy J. Griffin; David A. Bernlohr
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2-nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationship to the development of insulin resistance, proteomics technologies were utilized to identify aldehyde-modified proteins in adipose tissue. Adipose proteins from lean insulin-sensitive and obese insulin-resistant C57Bl/6J mice were incubated with biotin hydrazide and detected using horseradish peroxidase-conjugated streptavidin. High carbohydrate, high fat feeding of mice resulted in a ∼2–3-fold increase in total adipose protein carbonylation. Consistent with an increase in oxidative stress in obesity, the abundance of glutathione S-transferase A4 (GSTA4), a key enzyme responsible for metabolizing 4-HNE, was decreased ∼3–4-fold in adipose tissue of obese mice. To identify specific carbonylated proteins, biotin hydrazide-modified adipose proteins from obese mice were captured using avidin-Sepharose affinity chromatography, proteolytically digested, and subjected to LC-ESI MS/MS. Interestingly enzymes involved in cellular stress response, lipotoxicity, and insulin signaling such as glutathione S-transferase M1, peroxiredoxin 1, glutathione peroxidase 1, eukaryotic elongation factor 1α-1 (eEF1α1), and filamin A were identified. The adipocyte fatty acid-binding protein, a protein implicated in the regulation of insulin resistance, was found to be carbonylated in vivo with 4-HNE. In vitro modification of adipocyte fatty acid-binding protein with 4-HNE was mapped to Cys-117, occurred equivalently using either the R or S enantiomer of 4-HNE, and reduced the affinity of the protein for fatty acids ∼10-fold. These results indicate that obesity is accompanied by an increase in the carbonylation of a number of adipose-regulatory proteins that may serve as a mechanistic link between increased oxidative stress and the development of insulin resistance.
Journal of Nutritional Biochemistry | 2012
Emilie E. Vomhof-DeKrey; Matthew J. Picklo
The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 and proteins for glutathione synthesis. The Nrf2/ARE pathway has nutritional interest owing to its activation by phytochemicals such as sulforaphane. Recently, the Nrf2 pathway was identified as having regulatory functions in mitochondrial biogenesis, adipocyte differentiation and liver energy metabolism. Activation of Nrf2 increases energy metabolism and conversely suppresses lipid synthesis. Lard-based, but not soybean oil-based, high-fat diets reduce mRNA expression of Nrf2 and its downstream targets, suggesting a macronutrient influence on the activation of the Nrf2 pathway and susceptibility to oxidative stress. This review examines data revealing the Nrf2 pathways regulatory role in energy metabolism at the molecular, cellular and whole animal levels. Understanding the relationship of Nrf2 and energy metabolism in cells, tissues and physiologic systems will provide novel insights for nutritional interventions for obesity and its comorbidities such as diabetes.
Journal of Neurochemistry | 2008
Eric K. Long; Tonya C. Murphy; Laura J. Leiphon; John A. Watt; Jason D. Morrow; Ginger L. Milne; Jocelyn R. H. Howard; Matthew J. Picklo
Lipid peroxidation of docosahexaenoic (22:6; n‐3) acid (DHA) is elevated in the CNS in patients with Alzheimer’s disease and in animal models of seizure and ethanol withdrawal. One product of DHA oxidation is trans‐4‐hydroxy‐2‐hexenal (HHE), a six carbon analog of the n‐6 fatty acid derived trans‐4‐hydroxy‐2‐nonenal (HNE). In this work, we studied the neurotoxic potential of HHE. HHE and HNE were toxic to primary cultures of cerebral cortical neurons with LD50’s of 23 and 18 μmol/L, respectively. Toxicity was prevented by the addition of thiol scavengers. HHE and HNE depleted neuronal GSH content identically with depletion observed with 10 μmol/L of either compound. Using an antibody raised against HHE–protein adducts, we show that HHE modified specific proteins of 75, 50, and 45 kDa in concentration‐ and time‐dependent manners. The time‐dependent formation of HHE differed from that of F4‐neuroprostanes following in vitro DHA oxidation likely as a result of the different oxidation pathways involved. Using purified mitochondrial aldehyde dehydrogenase ALDH5A, we found that HHE was oxidized 6.5‐fold less efficiently than HNE. Our data demonstrate that HHE and HNE have similarities but also differences in their neurotoxic mechanisms and metabolism.
Nutrients | 2013
Susan K. Raatz; Jeffrey T. Silverstein; Lisa Jahns; Matthew J. Picklo
Increasing fish consumption is recommended for intake of omega-3 (n-3) fatty acids and to confer benefits for the risk reduction of cardiovascular disease (CVD). Most Americans are not achieving intake levels that comply with current recommendations. It is the goal of this review to provide an overview of the issues affecting this shortfall of intake. Herein we describe the relationship between fish intake and CVD risk reduction as well as the other nutritional contributions of fish to the diet. Currently recommended intake levels are described and estimates of fish consumption at a food disappearance and individual level are reported. Risk and benefit factors influencing the choice to consume fish are outlined. The multiple factors influencing fish availability from global capture and aquaculture are described as are other pertinent issues of fish nutrition, production, sustainability, and consumption patterns. This review highlights some of the work that needs to be carried out to meet the demand for fish and to positively affect intake levels to meet fish intake recommendations for CVD risk reduction.
Journal of Neurochemistry | 2004
Tonya C. Murphy; Venkataraman Amarnath; K. Michael Gibson; Matthew J. Picklo
Elevated levels of 4‐hydroxy‐trans‐2‐nonenal (HNE) are implicated in the pathogenesis of numerous neurodegenerative disorders. Although well‐characterized in the periphery, the mechanisms of detoxification of HNE in the CNS are unclear. HNE is oxidized to a non‐toxic metabolite in the rat cerebral cortex by mitochondrial aldehyde dehydrogenases (ALDHs). Two possible ALDH enzymes which might oxidize HNE in CNS mitochondria are ALDH2 and succinic semialdehyde dehydrogenase (SSADH/ALDH5A). It was previously established that hepatic ALDH2 can oxidize HNE. In this work, we tested the hypothesis that SSADH oxidizes HNE. SSADH is critical in the detoxification of the GABA metabolite, succinic semialdehyde (SSA). Recombinant rat SSADH oxidized HNE and other α,β‐unsaturated aldehydes. Inhibition and competition studies in rat brain mitochondria showed that SSADH was the predominant oxidizing enzyme for HNE but only contributed a portion of the total oxidizing activity in liver mitochondria. In vivo administration of diethyldithiocarbamate (DEDC) effectively inhibited (86%) ALDH2 activity but not HNE oxidation in liver mitochondria. The data suggest that a relationship between the detoxification of SSA and the neurotoxic aldehyde HNE exists in the CNS. Furthermore, these studies show that multiple hepatic aldehyde dehydrogenases are able to oxidize HNE.
Biochimica et Biophysica Acta | 2003
Ethan Nguyen; Matthew J. Picklo
Lipid peroxidation causes the generation of the neurotoxic aldehydes acrolein and 4-hydroxy-trans-2-nonenal (HNE). These products are elevated in neurodegenerative diseases and acute CNS trauma. Previous studies demonstrate that mitochondrial class 2 aldehyde dehydrogenase (ALDH2) is susceptible to inactivation by these alkenals. In the liver and brain another mitochondrial aldehyde dehydrogenase, succinic semialdehyde dehydrogenase (SSADH/ALDH5A1), is present. In this study, we tested the hypothesis that aldehyde products of lipid peroxidation inhibit SSADH activity using the endogenous substrate, succinic semialdehyde (SSA, 50 microM). Acrolein potently inhibited SSADH activity (IC(50)=15 microM) in rat brain mitochondrial preparations. This inhibition was of an irreversible and noncompetitive nature. HNE inhibited activity with an IC(50) of 110 microM. Trans-2-hexenal (HEX) and crotonaldehyde (100 microM each) did not inhibit activity. These data suggest that acrolein and HNE disrupt SSA metabolism and may have subsequent effects on CNS neurochemistry.
Biochemical and Biophysical Research Communications | 2008
Matthew J. Picklo
The acetylation of the epsilon-amino group of lysine to form N-acetyl lysine (N-AcLys)-modified proteins regulates the activity of metabolic proteins. Because of the multiple effects of ethanol upon hepatic metabolism, it was hypothesized that ethanol exposure increases the hepatic content of N-AcLys-modified proteins. To test this hypothesis, rats or mice were exposed to ethanol using a liquid diet regimen. Content of N-AcLys-modified proteins was elevated more than 5-fold after 6 weeks of ethanol exposure and persisted after ethanol withdrawal. Use of CYP2E1-knockout mice demonstrated that ethanol-induced acetylation was not dependent solely on CYP2E1 expression. The mitochondrial content of N-AcLys-modified proteins was elevated almost 5-fold following 6 weeks of ethanol exposure. Mitochondrial content of the deacetylase Sirt3 was unchanged by 6 weeks of ethanol exposure. These data indicate ethanol intoxication changes the acetylation status of, and likely the activity of, multiple mitochondrial proteins.
The American Journal of Clinical Nutrition | 2014
Lisa Jahns; LuAnn K. Johnson; Susan T. Mayne; Brenda Cartmel; Matthew J. Picklo; Igor V. Ermakov; Werner Gellermann; Leah D. Whigham
BACKGROUND Objective biomarkers are needed to assess adherence to vegetable and fruit intervention trials. Blood carotenoids are considered the best biomarker of vegetable and fruit intake, but collecting blood is invasive and the analyses are relatively expensive for population studies. Resonance Raman spectroscopy (RRS) is an innovative method for assessing carotenoids in skin noninvasively. OBJECTIVE Our objective was to compare blood carotenoid concentrations with skin carotenoid assessments by RRS during a controlled feeding intervention. DESIGN Twenty-nine participants consumed low-carotenoid diets (6 wk, phases 1 and 3), a provided diet containing 6-cup equivalents (1046 g/d) of vegetables and fruit (8 wk, phase 2), and usual diet (final 8 wk, phase 4). RESULTS At baseline, skin and plasma total carotenoid values were correlated (r = 0.61, P < 0.001). Skin and plasma carotenoid values decreased (P < 0.001) 36% and 30%, respectively, from baseline to the end of phase 1 and then increased (P < 0.001) by >200% at the end of phase 2. Plasma carotenoids returned to baseline concentrations by the middle of phase 3 and skin carotenoid concentrations by the middle of phase 4. Skin carotenoid status predicted plasma values by using a mixed linear model including all time points (r = 0.72, P < 0.001), which indicates that changes in skin carotenoid status closely follow changes in plasma across a broad range of intakes. At the individual level, skin carotenoids predicted plasma values (r = 0.70, P < 0.001) over all time points. CONCLUSION Skin carotenoid status assessed by resonance Raman spectroscopy is a noninvasive, objective biomarker of changes in vegetable and fruit intake.
Journal of Neurochemistry | 2003
Tonya C. Murphy; Venkataraman Amarnath; Matthew J. Picklo
4‐Hydroxy‐trans‐2‐nonenal (HNE) is a neurotoxic product of lipid peroxidation whose levels are elevated in multiple neurodegenerative diseases and CNS trauma. The detoxification of HNE may take the route of glutathione conjugation to the C3 carbon and the oxidation or reduction of the C1 aldehyde. In this work, we examined whether the oxidation of HNE to its corresponding carboxylic acid, 4‐hydroxy‐trans‐2‐nonenoate (HNEAcid) was detoxifying event, if it occurred in rat cerebral cortex, and in which subcellular compartments. Our results show that HNEAcid did not form protein adducts and was non‐toxic to Neuro 2A cells. HNEAcid formation occurred in rat cerebral cortex slices following exposure to HNE in a time‐dependent and dose‐dependent fashion. Homogenate studies indicated that HNEAcid formation was NAD+ dependent. Subcellular fractionation demonstrated that mitochondria had the highest specific activity for HNEAcid formation with a KM of 21 µm HNE. These data indicate that oxidation of HNE to its corresponding acid is a major detoxification pathway of HNE in the CNS and that mitochondria play a role in this process.
Journal of Agricultural and Food Chemistry | 2011
Susan K. Raatz; Mikhail Y. Golovko; Stephen A. Brose; Thad A. Rosenberger; Gary S. Burr; William R. Wolters; Matthew J. Picklo
The consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (22:6n-3) have known protective effects in the vasculature. It is not known whether the consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo salar) increases the level of n-3 and n-6 PUFA oxidation products over raw salmon. We measured the contents of several monohydroxy-fatty acids (MHFA), prostanoids, and resolvins. Our data demonstrate that baking did not change the overall total levels of MHFA. However, baking resulted in selective regioisomeric loss of hydroxy fatty acids from arachidonic acid (20:4n-6) and EPA, while significantly increasing hydroxyl-linoleic acid levels. The contents of prostanoids and resolvins were reduced several-fold with baking. The inclusion of a coating on the salmon prior to baking reduced the loss of some MHFA but had no effect on prostanoid losses incurred by baking. Baking did not decrease n-3 PUFA contents, indicating that baking of salmon is an acceptable means of preparation that does not alter the potential health benefits of high n-3 seafood consumption. The extent to which the levels of MHFA, prostanoids, and resolvins in the raw or baked fish have physiologic consequence for humans needs to be determined.