Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew K. Browning is active.

Publication


Featured researches published by Matthew K. Browning.


The Astrophysical Journal | 2008

SIMULATIONS OF DYNAMO ACTION IN FULLY CONVECTIVE STARS

Matthew K. Browning

We present three-dimensional nonlinear magnetohydrodynamic simulations of the interiors of fully convective M dwarfs. Our models consider 0.3 solar-mass stars using the Anelastic Spherical Harmonic code, with the spherical computational domain extending from 0.08 to 0.96 times the overall stellar radius. Like previous authors, we find that fully convective stars can generate kG-strength magnetic fields (in rough equipartition with the convective flows) without the aid of a tachocline of shear. Although our model stars are everywhere unstably stratified, the amplitudes and typical pattern sizes of the convective flows vary strongly with radius, with the outer regions of the stars hosting vigorous convection and field amplification while the deep interiors are more quiescent. Modest differential rotation is established in hydrodynamic calculations, but—unlike in some prior work—strongly quenched in MHD simulations because of the Maxwell stresses exerted by the dynamo-generated magnetic fields. Despite the lack of strong differential rotation, the magnetic fields realized in the simulations possess significant mean (axisymmetric) components, which we attribute partly to the strong influence of rotation on the slowly overturning flows.


The Astrophysical Journal | 2002

A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in the Small and Large Magellanic Clouds

Jason Tumlinson; J. M. Shull; Brian L. Rachford; Matthew K. Browning; Theodore P. Snow; A. W. Fullerton; Edward B. Jenkins; Blair D. Savage; Paul A. Crowther; H. W. Moos; K. R. Sembach; George Sonneborn; D. G. York

We describe a moderate-resolution Far Ultraviolet Spectroscopic Explorer (FUSE) survey of H2 along 70 sight lines to the Small and Large Magellanic Clouds, using hot stars as background sources. FUSE spectra of 67% of observed Magellanic Cloud sources (52% of LMC and 92% of SMC) exhibit absorption lines from the H2 Lyman and Werner bands between 912 and 1120 A. Our survey is sensitive to N(H2) ≥ 1014 cm-2; the highest column densities are log N(H2) = 19.9 in the LMC and 20.6 in the SMC. We find reduced H2 abundances in the Magellanic Clouds relative to the Milky Way, with average molecular fractions = 0.010 for the SMC and = 0.012 for the LMC, compared with = 0.095 for the Galactic disk over a similar range of reddening. The dominant uncertainty in this measurement results from the systematic differences between 21 cm radio emission and Lyα in pencil beam sight lines as measures of N(H I). These results imply that the diffuse H2 masses of the LMC and SMC are 8 × 106 and 2 × 106 M☉, respectively, 2% and 0.5% of the H I masses derived from 21 cm emission measurements. The LMC and SMC abundance patterns can be reproduced in ensembles of model clouds with a reduced H2 formation rate coefficient, R ~ 3 × 10-18 cm3 s-1, and incident radiation fields ranging from 10-100 times the Galactic mean value. We find that these high-radiation, low formation rate models can also explain the enhanced N(4)/N(2) and N(5)/N(3) rotational excitation ratios in the Clouds. We use H2 column densities in low rotational states (J = 0 and 1) to derive kinetic and/or rotational temperatures of diffuse interstellar gas, and we find that the distribution of rotational temperatures is similar to Galactic gas, with T01 = 82 ± 21 K for clouds with N(H2) ≥ 1016.5 cm-2. There is only a weak correlation between detected H2 and far-infrared fluxes as determined by IRAS, perhaps as a result of differences in the survey techniques. We find that the surface density of H2 probed by our pencil beam sight lines is far lower than that predicted from the surface brightness of dust in IRAS maps. We discuss the implications of this work for theories of star formation in low-metallicity environments.


The Astrophysical Journal | 2010

Persistent Magnetic Wreaths in a Rapidly Rotating Sun

Benjamin P. Brown; Matthew K. Browning; A. S. Brun; Mark S. Miesch; Juri Toomre

When our Sun was young it rotated much more rapidly than now. Observations of young, rapidly rotating stars indicate that many possess substantial magnetic activity and strong axisymmetric magnetic fields. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore the complex coupling between rotation, convection, and magnetism. Here, we study dynamo action realized in the bulk of the convection zone for a system rotating at 3 times the current solar rotation rate. We find that substantial organized global-scale magnetic fields are achieved by dynamo action in this system. Striking wreaths of magnetism are built in the midst of the convection zone, coexisting with the turbulent convection. This is a surprise, for it has been widely believed that such magnetic structures should be disrupted by magnetic buoyancy or turbulent pumping. Thus, many solar dynamo theories have suggested that a tachocline of penetration and shear at the base of the convection zone is a crucial ingredient for organized dynamo action, whereas these simulations do not include such tachoclines. We examine how these persistent magnetic wreaths are maintained by dynamo processes and explore whether a classical mean-field α-effect explains the regeneration of poloidal field. We find that the global-scale toroidal magnetic fields are maintained by an Ω-effect arising from the differential rotation, while the global-scale poloidal fields arise from turbulent correlations between the convective flows and magnetic fields. These correlations are not well represented by an α-effect that is based on the kinetic and magnetic helicities.


The Astrophysical Journal | 2006

DYNAMO ACTION IN THE SOLAR CONVECTION ZONE AND TACHOCLINE: PUMPING AND ORGANIZATION OF TOROIDAL FIELDS

Matthew K. Browning; Mark S. Miesch; Allan Sacha Brun; Juri Toomre

We present the first results from three-dimensional spherical shell simulations of magnetic dynamo action realized by turbulent convection penetrating downward into a tachocline of rotational shear. This permits us to assess several dynamical elements believed to be crucial to the operation of the solar global dynamo, variously involving differential rotation resulting from convection, magnetic pumping, and amplification of fields by stretching within the tachocline. The simulations reveal that strong axisymmetric toroidal magnetic fields (about 3000 G in strength) are realized within the lower stable layer, unlike in the convection zone where fluctuating fields are predominant. The toroidal fields in the stable layer possess a striking persistent antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. The associated mean poloidal magnetic fields there have a clear dipolar geometry, but we have not yet observed any distinctive reversals or latitudinal propagation. The presence of these deep magnetic fields appears to stabilize the sense of mean fields produced by vigorous dynamo action in the bulk of the convection zone.


The Astrophysical Journal | 2011

MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR

Benjamin P. Brown; Mark S. Miesch; Matthew K. Browning; A. S. Brun; Juri Toomre

Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an Ω-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple α-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate in the same fashion. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface.


The Astrophysical Journal | 2009

Evidence for Magnetic Flux Saturation in Rapidly Rotating M Stars

Ansgar Reiners; Gibor Basri; Matthew K. Browning

We present magnetic flux measurements in seven rapidly rotating M dwarfs. Our sample stars have X-ray and Hα emission indicative of saturated emission, i.e., emission at a high level, independent of rotation rate. Our measurements are made using near-infrared FeH molecular spectra observed with the High Resolution Echelle Spectrometer at Keck. Because of their large convective overturn times, the rotation velocity of M stars with small Rossby numbers is relatively slow and does not hamper the measurement of Zeeman splitting. The Rossby numbers of our sample stars are as small as 0.01. All our sample stars exhibit magnetic flux of kG strength. We find that the magnetic flux saturates in the same regime as saturation of coronal and chromospheric emission, at a critical Rossby number of around 0.1. The filling factors of both field and emission are near unity by then. We conclude that the strength of surface magnetic fields remains independent of rotation rate below that; making the Rossby number yet smaller by a factor of 10 has little effect. These saturated M-star dynamos generate an integrated magnetic flux of roughly 3 kG, with a scatter of about 1 kG. The relation between emission and flux also has substantial scatter.


The Astrophysical Journal | 2008

Rapidly Rotating Suns and Active Nests of Convection

Benjamin P. Brown; Matthew K. Browning; Allan Sacha Brun; Mark S. Miesch; Juri Toomre

In the solar convection zone, rotation couples with intensely turbulent convection to drive a strong differential rotation and achieve complex magnetic dynamo action. Our Sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the global-scale patterns of convection in such stars and the flows of differential rotation and meridional circulation, which are self-consistently established. The convection in these systems is richly time-dependent, and in our most rapidly rotating suns a striking pattern of localized convection emerges. Convection near the equator in these systems is dominated by one or two nests in longitude of locally enhanced convection, with quiescent streaming flow in between them at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation Δ Ω grows with more rapid rotation, while the relative shear Δ Ω/Ω0 decreases. In contrast, at more rapid rotation, the meridional circulations decrease in energy and peak velocities and break into multiple cells of circulation in both radius and latitude.


The Astrophysical Journal | 2004

Simulations of Core Convection in Rotating A-Type Stars: Differential Rotation and Overshooting

Matthew K. Browning; Allan Sacha Brun; Juri Toomre

We present the results of three-dimensional simulations of core convection within A-type stars of 2 M☉, at a range of rotation rates. We consider the inner 30% by radius of such stars, thereby encompassing the convective core and some of the surrounding radiative envelope. We utilize our anelastic spherical harmonic code, which solves the compressible Navier-Stokes equations in the anelastic approximation, to examine highly nonlinear flows that can span multiple scale heights. The cores of these stars are found to rotate differentially, with central cylindrical regions of strikingly slow rotation achieved in our simulations of stars whose convective Rossby number (Roc) is less than unity. Such differential rotation results from the redistribution of angular momentum by the nonlinear convection that strongly senses the overall rotation of the star. Penetrative convective motions extend into the overlying radiative zone, yielding a prolate shape (aligned with the rotation axis) to the central region in which nearly adiabatic stratification is achieved. This is further surrounded by a region of overshooting motions, the extent of which is greater at the equator than at the poles, yielding an overall spherical shape to the domain experiencing at least some convective mixing. We assess the overshooting achieved as the stability of the radiative exterior is varied and the weak circulations that result in that exterior. The convective plumes serve to excite gravity waves in the radiative envelope, ranging from localized ripples of many scales to some remarkable global resonances.


The Astrophysical Journal | 2009

EFFECTS OF FOSSIL MAGNETIC FIELDS ON CONVECTIVE CORE DYNAMOS IN A-TYPE STARS

Nicholas A. Featherstone; Matthew K. Browning; Allan Sacha Brun; Juri Toomre

The vigorous magnetic dynamo action achieved within the convective cores of A-type stars may be influenced by fossil magnetic fields within their radiative envelopes. We study such effects through three-dimensional simulations that model the inner 30% by radius of a 2 M ☉ A-type star, capturing the convective core and a portion of the overlying radiative envelope within our computational domain. We employ the three-dimensional anelastic spherical harmonic code to model turbulent dynamics within a deep rotating spherical shell. The interaction between a fossil field and the core dynamo is examined by introducing a large-scale magnetic field into the radiative envelope of a mature A star dynamo simulation. We find that the inclusion of a twisted toroidal fossil field can lead to a remarkable transition in the core dynamo behavior. Namely, a super-equipartition state can be realized in which the magnetic energy built by dynamo action is 10-fold greater than the kinetic energy of the convection itself. Such strong-field states may suggest that the resulting Lorentz forces should seek to quench the flows, yet we have achieved super-equipartition dynamo action that persists for multiple diffusion times. This is achieved by the relative co-alignment of the flows and magnetic fields in much of the domain, along with some lateral displacements of the fastest flows from the strongest fields. Convection in the presence of such strong magnetic fields typically manifests as 4-6 cylindrical rolls aligned with the rotation axis, each possessing central axial flows that imbue the rolls with a helical nature. The roll system also possesses core-crossing flows that couple distant regions of the core. We find that the magnetic fields exhibit a comparable global topology with broad, continuous swathes of magnetic field linking opposite sides of the convective core. We have explored several poloidal and toroidal fossil field geometries, finding that a poloidal component is essential for a transition to super-equipartition to occur.


Astronomy and Astrophysics | 2014

The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters - ENDGame for a HD 209458b test case

N. J. Mayne; Isabelle Baraffe; David M. Acreman; Chris Smith; Matthew K. Browning; David S. Amundsen; Nigel Wood; John Thuburn; D. R. Jackson

We are adapting the global circulation model (GCM) of the UK Met Office, the so-called unified model (UM), for the study of hot Jupiters. In this work we demonstrate the successful adaptation of the most sophisticated dynamical core, the component of the GCM which solves the equations of motion for the atmosphere, available within the UM, ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment). Within the same numerical scheme ENDGame supports solution to the dynamical equations under varying degrees of simplification. We present results from a simple, shallow (in atmospheric domain) hot Jupiter model (SHJ), and a more realistic (with a deeper atmosphere) HD 209458b test case. For both test cases we find that the large-scale, time-averaged (over the 1200 days prescribed test period), dynamical state of the atmosphere is relatively insensitive to the level of simplification of the dynamical equations. However, problems exist when attempting to reproduce the results for these test cases derived from other models. For the SHJ case the lower (and upper) boundary intersects the dominant dynamical features of the atmosphere meaning the results are heavily dependent on the boundary conditions. For the HD 209458b test case, when using the more complete dynamical models, the atmosphere is still clearly evolving after 1200 days, and in a transient state. Solving the complete (deep atmosphere and non-hydrostatic) dynamical equations allows exchange between the vertical and horizontal momentum of the atmosphere, via Coriolis and metric terms. Subsequently, interaction between the upper atmosphere and the deeper more slowly evolving (radiatively inactive) atmosphere significantly alters the results, and acts over timescales longer than 1200 days.

Collaboration


Dive into the Matthew K. Browning's collaboration.

Top Co-Authors

Avatar

Juri Toomre

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Benjamin P. Brown

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark S. Miesch

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gibor Basri

University of California

View shared research outputs
Top Co-Authors

Avatar

David S. Amundsen

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge