Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew K. Higgins is active.

Publication


Featured researches published by Matthew K. Higgins.


Nature | 2013

Severe malaria is associated with parasite binding to endothelial protein C receptor

Louise Turner; Thomas Lavstsen; Sanne S. Berger; Christian W. Wang; Jens Petersen; Marion Avril; Andrew J. Brazier; Jim Freeth; Jakob S. Jespersen; Morten A. Nielsen; Pamela Magistrado; John Lusingu; Joseph D. Smith; Matthew K. Higgins; Thor G. Theander

Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.


Journal of Molecular Biology | 2010

Full-Length Recombinant Plasmodium falciparum VAR2CSA Binds Specifically to CSPG and Induces Potent Parasite Adhesion-Blocking Antibodies

Pongsak Khunrae; Madeleine Dahlbäck; Morten A. Nielsen; Gorm Andersen; Sisse B. Ditlev; Mafalda Resende; Vera V. Pinto; Thor G. Theander; Matthew K. Higgins; Ali Salanti

Plasmodium falciparum malaria remains one of the worlds leading causes of human suffering and poverty. Each year, the disease takes 1–3 million lives, mainly in sub-Saharan Africa. The adhesion of infected erythrocytes (IEs) to vascular endothelium or placenta is the key event in the pathogenesis of severe P. falciparum infection. In pregnant women, the parasites express a single and unique member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family named VAR2CSA, which is associated with the ability of the IEs to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several Duffy-binding-like domains from VAR2CSA molecules have been shown in vitro to bind to CSA, but it has also been demonstrated that Duffy-binding-like domains from PfEMP1 proteins other than VAR2CSA can bind CSA. In addition, the specificity of the binding of VAR2CSA domains to glycosaminoglycans does not match that of VAR2CSA-expressing IEs. This has led to speculation that the domains of native VAR2CSA need to come together to form a specific binding site or that VAR2CSA might bind to CSA through a bridging molecule. Here, we describe the expression and purification of the complete extracellular region of VAR2CSA secreted at high yields from insect cells. Using surface plasmon resonance, we demonstrate that VAR2CSA alone binds with nanomolar affinity to human chondroitin sulphate proteoglycan and with significantly weaker affinity to other glycosaminoglycans, showing a specificity similar to that observed for IEs. Antibodies raised against full-length VAR2CSA completely inhibit recombinant VAR2CSA binding, as well as parasite binding to chondroitin sulphate proteoglycan. This is the first study to describe the successful production and functionality of a full-length PfEMP1. The specificity of the binding and anti-adhesion potency of induced IgG, together with high-yield production, encourages the use of full-length PfEMP1 in vaccine development strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Evolution of the primate trypanolytic factor APOL1

Russell Thomson; Giulio Genovese; Chelsea Canon; Daniella Kovacsics; Matthew K. Higgins; Mark Carrington; Cheryl A. Winkler; Jeffrey B. Kopp; Charles N. Rotimi; Adebowale Adeyemo; Ayo Doumatey; George Ayodo; Seth L. Alper; Martin R. Pollak; David J. Friedman; Jayne Raper

Significance African trypanosomes are parasites that can cause African sleeping sickness in humans. Humans and some primates, but not other mammals, have a gene called APOL1 that protects against certain trypanosomes. Genetic variants in APOL1 that arose in Africa are strongly associated with kidney disease in African Americans. These kidney disease-associated variants may have risen to high frequency in Africa because they can defend humans against a particularly pathogenic trypanosome. In this paper, we show how APOL1 has evolved by analyzing the distribution of these variants in Africa and then elucidating the molecular mechanisms that enhance their trypanosome killing capacity. We also show that these antitrypanosomal APOL1 variants may have adverse consequences for the host. ApolipoproteinL1 (APOL1) protects humans and some primates against several African trypanosomes. APOL1 genetic variants strongly associated with kidney disease in African Americans have additional trypanolytic activity against Trypanosoma brucei rhodesiense, the cause of acute African sleeping sickness. We combined genetic, physiological, and biochemical studies to explore coevolution between the APOL1 gene and trypanosomes. We analyzed the APOL1 sequence in modern and archaic humans and baboons along with geographic distribution in present day Africa to understand how the kidney risk variants evolved. Then, we tested Old World monkey, human, and engineered APOL1 variants for their ability to kill human infective trypanosomes in vivo to identify the molecular mechanism whereby human trypanolytic APOL1 variants evade T. brucei rhodesiense virulence factor serum resistance-associated protein (SRA). For one APOL1 kidney risk variant, a two-residue deletion of amino acids 388 and 389 causes a shift in a single lysine residue that mimics the Old World monkey sequence, which augments trypanolytic activity by preventing SRA binding. A second human APOL1 kidney risk allele, with an amino acid substitution that also restores sequence alignment with Old World monkeys, protected against T. brucei rhodesiense due in part to reduced SRA binding. Both APOL1 risk variants induced tissue injury in murine livers, the site of transgenic gene expression. Our study shows that both genetic variants of human APOL1 that protect against T. brucei rhodesiense have recapitulated molecular signatures found in Old World monkeys and raises the possibility that APOL1 variants have broader innate immune activity that extends beyond trypanosomes.


Nature | 2014

Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies.

Katherine E. Wright; Kathryn A. Hjerrild; Jonathan Bartlett; Alexander D. Douglas; Jing Jin; Rebecca E. Brown; Joseph J. Illingworth; Rebecca Ashfield; Stine B. Clemmensen; Willem A. de Jongh; Simon J. Draper; Matthew K. Higgins

Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host–parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.


Molecular Microbiology | 2003

Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly

Laurent Claret; Susannah R. Calder; Matthew K. Higgins; Colin E. Hughes

FliI is the peripheral membrane ATPase pivotal to the type III protein export mechanism underlying the assembly of the bacterial flagellum. Gel filtration and multiangle light scattering showed that purified soluble native FliI protein was in a monomeric state but, in the presence of ATP, FliI showed a propensity to oligomerize. Electron microscopy revealed that FliI assembles to a ring structure, the yield of which was increased by the presence of a non‐hydrolysable ATP analogue. Single particle analysis of the resulting electron micrograph images, to which no symmetry was applied, showed that the FliI ring structure has sixfold symmetry and an external diameter of ≈ 10 nm. The oligomeric ring has a central cavity of 2.5–3.0 nm, which is comparable to the known diameter of the flagellar export channel into which export substrates feed. Enzymatic activity of the FliI ATPase showed positive co‐operativity, establishing that oligomerization and enzyme activity are coupled. Escherichia coli phospholipids increased enzyme co‐operativity, and in vitro cross‐linking demonstrated that they promoted FliI multimerization. The data reveal central facets of the structure and action of the flagellar assembly ATPase and, by extension, the homologous ATPases of virulence‐related type III export systems.


Journal of Biological Chemistry | 2008

The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria

Matthew K. Higgins

Adhesive PfEMP1 proteins are displayed on the surface of malaria-infected red blood cells. They play a critical role in the disease, tethering infected cells away from destruction by the spleen and causing many severe symptoms. A molecular understanding of how these domains maintain their binding properties while evading immune detection will be important in developing therapeutics. In malaria of pregnancy, domains from the var2csa-encoded PfEMP1 protein interact with chondroitin sulfate on the placenta surface. This causes accumulation of infected red blood cells, leading to placental inflammation and block of blood flow to the developing fetus. This is associated with maternal anemia, low birth weight, and premature delivery and can lead to the death of mother and child. Here I present the structure of the chondroitin sulfate-binding DBL3X domain from a var2csa-encoded PfEMP1 protein. The domain adopts a fold similar to malarial invasion proteins, with extensive loop insertions. One loop is flexible in the unliganded structure but observed in the presence of sulfate or disaccharide, where it completes a sulfate-binding site. This loop, and others surrounding this putative carbohydrate-binding site, are flexible and polymorphic, perhaps protecting the binding site from immune detection. This suggests a model for how the domain maintains ligand binding while evading the immune response and will guide future drug and vaccine development.


Cellular Microbiology | 2013

Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes.

Joseph D. Smith; J. Alexandra Rowe; Matthew K. Higgins; Thomas Lavstsen

Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody‐mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure–function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.


Trends in Biochemical Sciences | 2002

Snap-shots of clathrin-mediated endocytosis.

Matthew K. Higgins; Harvey T. McMahon

Clathrin-mediated endocytosis is one of the major entry routes into a eukaryotic cell. It is driven by protein components that aid the selection of cargo and provide the mechanical force needed to both deform the plasma membrane and detach a vesicle. Clathrin-coated vesicles were first observed by electron microscopy in the early 1960s. In subsequent years, many of the characteristic intermediates generated during vesicle formation have been trapped and observed. A variety of electron microscopy techniques, from the analysis of sections through cells to the study of endocytic intermediates formed in vitro, have led to the proposition of a sequence of events and of roles for different proteins during vesicle formation. In this article, these techniques and the insights gained are reviewed, and their role in providing snap-shots of the stages of endocytosis in atomic detail is discussed.


Cell Host & Microbe | 2015

Structural Conservation Despite Huge Sequence Diversity Allows EPCR Binding by the PfEMP1 Family Implicated in Severe Childhood Malaria

Clinton K.Y. Lau; Louise Turner; Jakob S. Jespersen; Edward D. Lowe; Bent Petersen; Christian W. Wang; Jens Petersen; John Lusingu; Thor G. Theander; Thomas Lavstsen; Matthew K. Higgins

Summary The PfEMP1 family of surface proteins is central for Plasmodium falciparum virulence and must retain the ability to bind to host receptors while also diversifying to aid immune evasion. The interaction between CIDRα1 domains of PfEMP1 and endothelial protein C receptor (EPCR) is associated with severe childhood malaria. We combine crystal structures of CIDRα1:EPCR complexes with analysis of 885 CIDRα1 sequences, showing that the EPCR-binding surfaces of CIDRα1 domains are conserved in shape and bonding potential, despite dramatic sequence diversity. Additionally, these domains mimic features of the natural EPCR ligand and can block this ligand interaction. Using peptides corresponding to the EPCR-binding region, antibodies can be purified from individuals in malaria-endemic regions that block EPCR binding of diverse CIDRα1 variants. This highlights the extent to which such a surface protein family can diversify while maintaining ligand-binding capacity and identifies features that should be mimicked in immunogens to prevent EPCR binding.


Journal of Immunology | 2013

A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

Anja Bengtsson; Louise Joergensen; Thomas Salhøj Rask; Rebecca W. Olsen; Marianne A. Andersen; Louise Turner; Thor G. Theander; Lars Hviid; Matthew K. Higgins; Alister Craig; Alan Brown; Anja T. R. Jensen

Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1–binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1–binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding–like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum–exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1–specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.

Collaboration


Dive into the Matthew K. Higgins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Brown

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alister Craig

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Turner

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Jin

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge