Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew K. Thompson is active.

Publication


Featured researches published by Matthew K. Thompson.


Biophysical Journal | 2010

Internal binding of halogenated phenols in dehaloperoxidase-hemoglobin inhibits peroxidase function.

Matthew K. Thompson; Michael F. Davis; Vesna de Serrano; Francesco P. Nicoletti; Barry D. Howes; Giulietta Smulevich; Stefan Franzen

Dehaloperoxidase (DHP) from the annelid Amphitrite ornata is a catalytically active hemoglobin-peroxidase that possesses a unique internal binding cavity in the distal pocket above the heme. The previously published crystal structure of DHP shows 4-iodophenol bound internally. This led to the proposal that the internal binding site is the active site for phenol oxidation. However, the native substrate for DHP is 2,4,6-tribromophenol, and all attempts to bind 2,4,6-tribromophenol in the internal site under physiological conditions have failed. Herein, we show that the binding of 4-halophenols in the internal pocket inhibits enzymatic function. Furthermore, we demonstrate that DHP has a unique two-site competitive binding mechanism in which the internal and external binding sites communicate through two conformations of the distal histidine of the enzyme, resulting in nonclassical competitive inhibition. The same distal histidine conformations involved in DHP function regulate oxygen binding and release during transport and storage by hemoglobins and myoglobins. This work provides further support for the hypothesis that DHP possesses an external binding site for substrate oxidation, as is typical for the peroxidase family of enzymes.


Biochemistry | 2010

New Insights into the Role of Distal Histidine Flexibility in Ligand Stabilization of Dehaloperoxidase—Hemoglobin from Amphitrite ornata

Francesco P. Nicoletti; Matthew K. Thompson; Barry D. Howes; Stefan Franzen; Giulietta Smulevich

The present work highlights the important role played by the distal histidine in controlling the binding of heme ligands in dehaloperoxidase (DHP) as compared to myoglobin and peroxidases. In DHP the distal histidine is highly mobile and undergoes a conformational change that places it within hydrogen-bonding distance of anionic ligands and water, where strong hydrogen bonding can occur. The detailed resonance Raman (RR) analysis at room temperature shows the presence of an equilibrium between a 5-coordinate and a 6-coordinate (aquo) high-spin form. The equilibrium shifts toward the aquo form at 12 K. These two forms are consistent with the existing X-ray structures where a closed conformation, with His55 positioned in the distal pocket and H-bonded with the distal water molecule (6-coordinate), and an open solvent-exposed conformation, with the His55 displaced from the distal pocket (5-coordinate form), are in equilibrium. Moreover, the comparison between the Raman data at 298 and 12 K and the results obtained by EPR of DHP in the presence of 4-iodophenol highlights the formation of a pure 5-coordinate high-spin form (open conformation). The data reported herein support the role of His55 in facilitating the interaction of substrate and inhibitor in the regulation of enzyme function, as previously suggested. The two conformations of His55 in equilibrium at room temperature provide a level of control that permits the distal histidine to act as both the acid-base catalyst in the peroxidase mechanism and the stabilizing amino acid for exogenous heme-coordinated ligands.


Biochemistry | 2010

Spectroscopic and Mechanistic Investigations of Dehaloperoxidase B from Amphitrite ornata

Jennifer D'Antonio; Edward L. D'Antonio; Matthew K. Thompson; Edmond F. Bowden; Stefan Franzen; Tatyana I. Smirnova; Reza A. Ghiladi

Dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a bifunctional enzyme that possesses both hemoglobin and peroxidase activities. Of the two DHP isoenzymes identified to date, much of the recent focus has been on DHP A, whereas very little is known pertaining to the activity, substrate specificity, mechanism of function, or spectroscopic properties of DHP B. Herein, we report the recombinant expression and purification of DHP B, as well as the details of our investigations into its catalytic cycle using biochemical assays, stopped-flow UV-visible, resonance Raman, and rapid freeze-quench electron paramagnetic resonance spectroscopies, and spectroelectrochemistry. Our experimental design reveals mechanistic insights and kinetic descriptions of the dehaloperoxidase mechanism which have not been previously reported for isoenzyme A. Namely, we demonstrate a novel reaction pathway in which the products of the oxidative dehalogenation of trihalophenols (dihaloquinones) are themselves capable of inducing formation of oxyferrous DHP B, and an updated catalytic cycle for DHP is proposed. We further demonstrate that, unlike the traditional monofunctional peroxidases, the oxyferrous state in DHP is a peroxidase-competent starting species, which suggests that the ferric oxidation state may not be an obligatory starting point for the enzyme. The data presented herein provide a link between the peroxidase and oxygen transport activities which furthers our understanding of how this bifunctional enzyme is able to unite its two inherent functions in one system.


Journal of the American Chemical Society | 2010

Compound ES of Dehaloperoxidase Decays via Two Alternative Pathways Depending on the Conformation of the Distal Histidine

Matthew K. Thompson; Stefan Franzen; Reza A. Ghiladi; Brandon J. Reeder; Dimitri A. Svistunenko

Dehaloperoxidase (DHP) is a respiratory hemoglobin (Hb) that has been shown to catalyze the conversion of trihalophenols to dihaloquinones in the presence of hydrogen peroxide. Ferric heme states of the resting DHP and the free radical intermediates formed under H2O2 treatment were studied by low-temperature electron paramagnetic resonance spectroscopy in the range of reaction times from 50 ms to 2 min at three different pH values. Two high-spin ferric heme forms were identified in the resting enzyme and assigned to the open and closed conformations of the distal histidine, His55. Two free radicals were found in DHP activated by H2O2: the radical associated with Compound ES (the enzyme with the heme in the oxoferryl state and a radical on the polypeptide chain) has been assigned to Tyr34, and the other radical has been assigned to Tyr38. The Tyr34 radical is formed with a very high relative yield (almost 100% of heme), atypical of other globins. High-performance liquid chromatography analysis of the reaction products showed a pH-dependent formation of covalent heme-to-protein cross-links. The stable DHP Compound RH, formed under H2O2 in the absence of the trihalophenol substrates, is proposed to be a state with the ferric heme covalently cross-linked to Tyr34. A kinetic model of the experimental data suggests that formation of Compound RH and formation of the Tyr38 radical are two alternative routes of Compound ES decay. Which route is taken depends on the conformation of His55: in the less populated closed conformation, the Tyr38 radical is formed, but in the major open conformation, Compound ES decays, yielding Compound RH, a product of safe termination of the two oxidizing equivalents of H2O2 when no substrate is available.


Biochimica et Biophysica Acta | 2012

The dehaloperoxidase paradox

Stefan Franzen; Matthew K. Thompson; Reza A. Ghiladi

The dual functions of the dehaloperoxidase-hemoglobin of Amphitrite ornata leads to a paradox. Peroxidase and hemoglobin functions require ferric and ferrous resting states, respectively. Assuming that hemoglobin function is the dominant function, the starting point for peroxidase activation would be the oxyferrous state. Activation of that state leads to the ferryl intermediate, followed by one-electron oxidation of the substrate, which results in the ferric state. Since no exogenous reductant is known, there is no return to the ferrous form or hemoglobin function. The observation that an internal binding site for 4-bromophenol leads to inhibition leads to a further paradox that the enzyme would be inhibited immediately upon activation under ambient conditions in benthic ecosystems where the inhibitor, 4-bromophenol is present in greater concentration than the substrate, 2,4,6-tribromophenol. In this review, we explore the unresolved aspects of the reaction scheme that leads to the apparent paradox. Recent data showing activation of the oxyferrous state, an extremely high reduction potential and exogenous reduction by the 2,6-dibromoquinone product present a potential resolution of the paradox. These aspects are discussed in the context of control of reactivity radical pathways and reactivity by the motion of the distal histidine, H55, which in turn is coupled to the binding of substrate and inhibitor.


Biochemistry | 2013

Structural and Chemical Aspects of Resistance to the Antibiotic Fosfomycin Conferred by FosB from Bacillus cereus.

Matthew K. Thompson; Mary E. Keithly; Joel M. Harp; Paul D. Cook; Kevin L. Jagessar; Gary A. Sulikowski; Richard N. Armstrong

The fosfomycin resistance enzymes, FosB, from Gram-positive organisms, are M(2+)-dependent thiol tranferases that catalyze nucleophilic addition of either L-cysteine (L-Cys) or bacillithiol (BSH) to the antibiotic, resulting in a modified compound with no bacteriacidal properties. Here we report the structural and functional characterization of FosB from Bacillus cereus (FosB(Bc)). The overall structure of FosB(Bc), at 1.27 Å resolution, reveals that the enzyme belongs to the vicinal oxygen chelate (VOC) superfamily. Crystal structures of FosB(Bc) cocrystallized with fosfomycin and a variety of divalent metals, including Ni(2+), Mn(2+), Co(2+), and Zn(2+), indicate that the antibiotic coordinates to the active site metal center in an orientation similar to that found in the structurally homologous manganese-dependent fosfomycin resistance enzyme, FosA. Surface analysis of the FosB(Bc) structures show a well-defined binding pocket and an access channel to C1 of fosfomycin, the carbon to which nucleophilic addition of the thiol occurs. The pocket and access channel are appropriate in size and shape to accommodate L-Cys or BSH. Further investigation of the structures revealed that the fosfomycin molecule, anchored by the metal, is surrounded by a cage of amino acids that hold the antibiotic in an orientation such that C1 is centered at the end of the solvent channel, positioning the compound for direct nucleophilic attack by the thiol substrate. In addition, the structures of FosB(Bc) in complex with the L-Cys-fosfomycin product (1.55 Å resolution) and in complex with the bacillithiol-fosfomycin product (1.77 Å resolution) coordinated to a Mn(2+) metal in the active site have been determined. The L-Cys moiety of either product is located in the solvent channel, where the thiol has added to the backside of fosfomycin C1 located at the end of the channel. Concomitant kinetic analyses of FosB(Bc) indicated that the enzyme has a preference for BSH over L-Cys when activated by Mn(2+) and is inhibited by Zn(2+). The fact that Zn(2+) is an inhibitor of FosB(Bc) was used to obtain a ternary complex structure of the enzyme with both fosfomycin and L-Cys bound.


Biochemistry | 2014

Structure and Function of the Genomically Encoded Fosfomycin Resistance Enzyme, FosB, from Staphylococcus aureus.

Matthew K. Thompson; Mary E. Keithly; Michael C. Goodman; Neal D. Hammer; Paul D. Cook; Kevin L. Jagessar; Joel M. Harp; Eric P. Skaar; Richard N. Armstrong

The Gram-positive pathogen Staphylococcus aureus is a leading cause of global morbidity and mortality. Like many multi-drug-resistant organisms, S. aureus contains antibiotic-modifying enzymes that facilitate resistance to a multitude of antimicrobial compounds. FosB is a Mn2+-dependent fosfomycin-inactivating enzyme found in S. aureus that catalyzes nucleophilic addition of either l-cysteine (l-Cys) or bacillithiol (BSH) to the antibiotic, resulting in a modified compound with no bactericidal properties. The three-dimensional X-ray crystal structure of FosB from S. aureus (FosBSa) has been determined to a resolution of 1.15 Å. Cocrystallization of FosBSa with either l-Cys or BSH results in a disulfide bond between the exogenous thiol and the active site Cys9 of the enzyme. An analysis of the structures suggests that a highly conserved loop region of the FosB enzymes must change conformation to bind fosfomycin. While two crystals of FosBSa contain Zn2+ in the active site, kinetic analyses of FosBSa indicated that the enzyme is inhibited by Zn2+ for l-Cys transferase activity and only marginally active for BSH transferase activity. Fosfomycin-treated disk diffusion assays involving S. aureus Newman and the USA300 JE2 methicillin-resistant S. aureus demonstrate a marked increase in the sensitivity of the organism to the antibiotic in either the BSH or FosB null strains, indicating that both are required for survival of the organism in the presence of the antibiotic. This work identifies FosB as a primary fosfomycin-modifying pathway of S. aureus and establishes the enzyme as a potential therapeutic target for increased efficacy of fosfomycin against the pathogen.


Journal of Physical Chemistry B | 2010

Kinetic Analysis of a Naturally Occurring Bioremediation Enzyme: Dehaloperoxidase-Hemoglobin from Amphitrite ornata

Huan Ma; Matthew K. Thompson; John Gaff; Stefan Franzen

The temperature dependence of the rate constant for substrate oxidation by the dehaloperoxidase-hemoglobin (DHP) of Amphitrite ornata has been measured from 278 to 308 K. The rate constant is observed to increase over this range by approximately a factor of 2 for each 10 °C temperature increment. An analysis of the initial rates using a phenomenological approach that expresses the peroxidase ping-pong mechanism in the form of the Michaelis-Menten equation leads to an interpretation of the effects in terms of the fundamental rate constants. The analysis of kinetic data considers a combination of diffusion rate constants for substrate and H(2)O(2), elementary steps involving activation and heterolysis of the O-O bond of H(2)O(2), and two electron transfers from the substrate to the iron. To complete the analysis from the perspective of turnover of substrate into product, density function theory (DFT) calculations were used to address the fate of phenoxy radical intermediates. The analysis suggests a dominant role for diffusion in the kinetics of DHP.


Journal of Physical Chemistry B | 2012

The Role of the Distal Histidine in H2O2 Activation and Heme Protection in both Peroxidase and Globin Functions

Junjie Zhao; Vesna de Serrano; Rania Dumarieh; Matthew K. Thompson; Reza A. Ghiladi; Stefan Franzen

The distal histidine mutations of dehaloperoxidase-hemoglobin A (DHP A) to aspartate (H55D) and asparagine (H55N) have been prepared to study the role played by the distal histidine in both activation and protection against oxidation by radicals in heme proteins. The H55D and H55N mutants of DHP A have ~6-fold and ~11-fold lower peroxidase activities than wild type enzyme toward the oxidation of 2,4,6-trichlorophenol (TCP) to yield 2,6-dichloroquinone (DCQ) in the presence of H(2)O(2). The origin of the lower rate constants may be the solvent-exposed conformations of distal D55 and N55, which would have the dual effect of destabilizing the binding of H(2)O(2) to the heme iron, and of removing the acid-base catalyst necessary for the heterolytic O-O bond cleavage of heme-bound H(2)O(2) (i.e., compound 0). The partial peroxidase activity of H55D can be explained if one considers that there are two conformations of the distal aspartate (open and closed) by analogy with the distal histidine. We hypothesize that the distal aspartate has an active conformation in the distal pocket (closed). Although the open form is observed in the low-temperature X-ray crystal structure of ferric H55D, the closed form is observed in the FTIR spectrum of the carbonmonoxy form of the H55D mutant. Consistent with this model, the H55D mutant also shows inhibition of TCP oxidation by 4-bromophenol (4-BP). Consistent with the protection hypothesis, compound ES, the tyrosyl radical-containing ferryl intermediate observed in WT DHP A, was not observed in H55D.


Archives of Biochemistry and Biophysics | 2011

Oxidative dechlorination of halogenated phenols catalyzed by two distinct enzymes: Horseradish peroxidase and dehaloperoxidase

Lukasz Szatkowski; Matthew K. Thompson; Rafał Kamiński; Stefan Franzen; Agnieszka Dybala-Defratyka

The mechanism of the dehalogenation step catalyzed by dehaloperoxidase (DHP) from Amphitrite ornata, an unusual heme-containing protein with a globin fold and peroxidase activity, has remarkable similarity with that of the classical heme peroxidase, horseradish peroxidase (HRP). Based on quantum mechanical/molecular mechanical (QM/MM) modeling and experimentally determined chlorine kinetic isotope effects, we have concluded that two sequential one electron oxidations of the halogenated phenol substrate leads to a cationic intermediate that strongly resembles a Meisenheimer intermediate - a commonly formed reactive complex during nucleophilic aromatic substitution reactions especially in the case of arenes carrying electron withdrawing groups.

Collaboration


Dive into the Matthew K. Thompson's collaboration.

Top Co-Authors

Avatar

Stefan Franzen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Reza A. Ghiladi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline K. Barton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael F. Davis

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge