Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew L. Nilles is active.

Publication


Featured researches published by Matthew L. Nilles.


Infection and Immunity | 2008

Resistance of Yersinia pestis to Complement-Dependent Killing Is Mediated by the Ail Outer Membrane Protein

Sara Schesser Bartra; Katie L. Styer; Deanna M. O'Bryant; Matthew L. Nilles; B. Joseph Hinnebusch; Alejandro Aballay; Gregory V. Plano

ABSTRACT Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37°C. Ail was expressed at high levels at both 26 and 37°C, but not at 6°C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated.


Journal of Bacteriology | 2001

LcrG-LcrV Interaction Is Required for Control of Yops Secretion in Yersinia pestis

Jyl S. Matson; Matthew L. Nilles

Yersinia pestis expresses a set of plasmid-encoded virulence proteins called Yops and LcrV that are secreted and translocated into eukaryotic cells by a type III secretion system. LcrV is a multifunctional protein with antihost and positive regulatory effects on Yops secretion that forms a stable complex with a negative regulatory protein, LcrG. LcrG has been proposed to block the secretion apparatus (Ysc) from the cytoplasmic face of the inner membrane under nonpermissive conditions for Yops secretion, when levels of LcrV in the cell are low. A model has been proposed to describe secretion control based on the relative levels of LcrG and LcrV in the bacterial cytoplasm. This model proposes that under secretion-permissive conditions, levels of LcrV are increased relative to levels of LcrG, so that the excess LcrV titrates LcrG away from the Ysc, allowing secretion of Yops to occur. To further test this model, a mutant LcrG protein that could no longer interact with LcrV was created. Expression of this LcrG variant blocked secretion of Yops and LcrV under secretion permissive conditions in vitro and in a tissue culture model. These results agree with the previously described secretion-blocking activity of LcrG and demonstrate that the interaction of LcrV with LcrG is necessary for controlling Yops secretion.


BMC Microbiology | 2005

Immunization of mice with YscF provides protection from Yersinia pestis infections

Jyl S Matson; Kelly Durick; David S. Bradley; Matthew L. Nilles

BackgroundYersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous.ResultsDesired features in vaccine candidates would be antigens that are conserved, essential for virulence and accessible to circulating antibody. Several of the proteins required for the construction or function of the type III secretion system (TTSS) complex could be ideal contenders to meet the desired features of a vaccine candidate. Accordingly, the TTSS needle complex protein, YscF, was selected to investigate its potential as a protective antigen. In this study we describe the overexpression, purification and use of YscF as a protective antigen. YscF immunization triggers a robust antibody response to YscF and that antibody response is able to afford significant protection to immunized mice following challenge with Y. pestis. Additionally, evidence is presented that suggests antibody to YscF is likely not protective by blocking the activity of the TTSS.ConclusionIn this study we investigated YscF, a surface-expressed protein of the Yersinia pestis type III secretion complex, as a protective antigen against experimental plague infection. Immunization of mice with YscF resulted in a high anti-YscF titer and provided protection against i.v. challenge with Y. pestis. This is the first report to our knowledge utilizing a conserved protein from the type III secretion complex of a gram-negative pathogen as a candidate for vaccine development.


BMC Microbiology | 2002

Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface

Jyl S Matson; Matthew L. Nilles

BackgroundSecretion of anti-host proteins by Yersinia pestis via a type III mechanism is not constitutive. The process is tightly regulated and secretion occurs only after an appropriate signal is received. The interaction of LcrG and LcrV has been demonstrated to play a pivotal role in secretion control. Previous work has shown that when LcrG is incapable of interacting with LcrV, secretion of anti-host proteins is prevented. Therefore, an understanding of how LcrG interacts with LcrV is required to evaluate how this interaction regulates the type III secretion system of Y. pestis. Additionally, information about structure-function relationships within LcrG is necessary to fully understand the role of this key regulatory protein.ResultsIn this study we demonstrate that the N-terminus of LcrG is required for interaction with LcrV. The interaction likely occurs within a predicted amphipathic coiled-coil domain within LcrG. Our results demonstrate that the hydrophobic face of the putative helix is required for LcrV interaction. Additionally, we demonstrate that the LcrG homolog, PcrG, is incapable of blocking type III secretion in Y. pestis. A genetic selection was utilized to obtain a PcrG variant capable of blocking secretion. This PcrG variant allowed us to locate a region of LcrG involved in secretion blocking.ConclusionOur results demonstrate that LcrG interacts with LcrV via hydrophobic interactions located in the N-terminus of LcrG within a predicted coiled-coil motif. We also obtained preliminary evidence that the secretion blocking activity of LcrG is located between amino acids 39 and 53.


Journal of Bacteriology | 2007

Structure-Function Analysis of the C-Terminal Domain of LcrV from Yersinia pestis

Mohamad A. Hamad; Matthew L. Nilles

LcrV, a multifunctional protein, acts as a positive regulator of effector protein secretion for the type III secretion system (T3SS) in Yersinia pestis by interaction with the negative regulator LcrG. In this study, LcrV was analyzed to identify regions required for LcrG interaction. Random-linker insertion mutagenesis, deletion analysis, and site-directed mutagenesis of hydrophobic amino acids between residues 290 and 311 allowed the isolation of an LcrV mutant (LcrV L291R F308R) defective for LcrG interaction. The new residues identified in LcrG interaction lie in helix 12 of LcrV; residues in helix 7 of LcrV are known to be involved in LcrG interaction. Helix 7 and helix 12 of LcrV interact to form an intramolecular coiled coil; these new results suggest that the intramolecular coiled coil in LcrV is required for LcrG interaction and activation of the T3SS.


Advances in Experimental Medicine and Biology | 2007

Roles of YopN, LcrG and LcrV in Controlling Yops Secretion by Yersinia pestis

Mohamad A. Hamad; Matthew L. Nilles

Control of Yops secretion in pathogenic Yersinia is achieved at several levels. These levels likely include transcriptional, post-transcriptional, translational and secretional controls. Secretion control appears to be mediated by two pathways. One pathway involves YopN and proteins that interact with YopN. The second pathway consists of LcrG and its interaction with LcrV. LcrV is a postive regulator of Yops secretion that exerts control over Yops secretion by negating the secretion blocking role of LcrG. However, the intersection of these two control pathways is not understood. Recent work has allowed the development of a speculative model that brings YopN-mediated and LcrG-LcrV-mediated control together in the context of the ability of the needle complex to respond to Ca2+.


Infection and Immunity | 2014

Type III Secretion Needle Proteins Induce Cell Signaling and Cytokine Secretion via Toll-Like Receptors

Danielle L. Jessen; Patrick Osei-Owusu; Melody Toosky; William Roughead; David S. Bradley; Matthew L. Nilles

ABSTRACT Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses.


Antimicrobial Agents and Chemotherapy | 2014

A Type III Secretion System Inhibitor Targets YopD while Revealing Differential Regulation of Secretion in Calcium-Blind Mutants of Yersinia pestis

Danielle L. Jessen; David S. Bradley; Matthew L. Nilles

ABSTRACT Numerous Gram-negative pathogens rely upon type III secretion (T3S) systems to cause disease. Several small-molecule inhibitors of the type III secretion systems have been identified; however, few targets of these inhibitors have been elucidated. Here we report that 2,2′-thiobis-(4-methylphenol) (compound D), inhibits type III secretion in Yersinia pestis, Yersinia pseudotuberculosis, and Pseudomonas aeruginosa. YopD, a protein involved in the formation of the translocon and regulatory processes of the type III secretion system, appears to play a role in the inhibition of secretion by compound D. The use of compound D in T3S regulatory mutants demonstrated a difference in secretion inhibition in the presence and absence of calcium. Interestingly, compound D was effective only under conditions without calcium, indicating that a secretion-active needle structure may be necessary for compound D to inhibit secretion.


BMC Microbiology | 2008

LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis

Laura D. Reina; Deanna M. O'Bryant; Jyl S. Matson; Matthew L. Nilles

BackgroundLcrG, a negative regulator of the Yersinia type III secretion apparatus has been shown to be primarily a cytoplasmic protein, but is secreted at least in Y. pestis. LcrG secretion has not been functionally analyzed and the relevance of LcrG secretion on LcrG function is unknown.ResultsAn LcrG-GAL4AD chimera, originally constructed for two-hybrid analyses to analyze LcrG protein interactions, appeared to be not secreted but the LcrG-GAL4AD chimera retained the ability to regulate Yops secretion. This result led to further investigation to determine the significance of LcrG secretion on LcrG function. Additional analyses including deletion and substitution mutations of amino acids 2–6 in the N-terminus of LcrG were constructed to analyze LcrG secretion and LcrGs ability to control secretion. Some changes to the N-terminus of LcrG were found to not affect LcrGs secretion or LcrGs secretion-controlling activity. However, substitution of poly-isoleucine in the N-terminus of LcrG did eliminate LcrG secretion but did not affect LcrGs secretion controlling activity.ConclusionThese results indicate that secretion of LcrG, while observable and T3SS mediated, is not relevant for LcrGs ability to control secretion.


PLOS Neglected Tropical Diseases | 2015

Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure.

Nicole Haese; Rebecca L. Brocato; Thomas A. Henderson; Matthew L. Nilles; Steve A. Kwilas; Matthew Josleyn; Christopher D. Hammerbeck; James Schiltz; Michael Royals; Jack Ballantyne; Jay W. Hooper; David S. Bradley

Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product capable of preventing a lethal disease when administered post-exposure.

Collaboration


Dive into the Matthew L. Nilles's collaboration.

Top Co-Authors

Avatar

David S. Bradley

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis D. Alvine

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyl S Matson

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Roughead

University of North Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge