Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew M. Champion is active.

Publication


Featured researches published by Matthew M. Champion.


Analytical Chemistry | 2012

Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry as an Alternative Proteomics Platform to Ultraperformance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry for Samples of Intermediate Complexity

Yihan Li; Matthew M. Champion; Liangliang Sun; Patricia A. DiGiuseppe Champion; Roza Wojcik; Norman J. Dovichi

We demonstrate the use of capillary zone electrophoresis with an electrokinetically pumped sheath-flow electrospray interface for the analysis of a tryptic digest of a sample of intermediate protein complexity, the secreted protein fraction of Mycobacterium marinum. For electrophoretic analysis, 11 fractions were generated from the sample using reverse-phase liquid chromatography; each fraction was analyzed by CZE-ESI-MS/MS, and 334 peptides corresponding to 140 proteins were identified in 165 min of mass spectrometer time at 95% confidence (FDR < 0.15%). In comparison, 388 peptides corresponding to 134 proteins were identified in 180 min of mass spectrometer time by triplicate UPLC-ESI-MS/MS analyses, each using 250 ng of the unfractionated peptide mixture, at 95% confidence (FDR < 0.15%). Overall, 62% of peptides identified in CZE-ESI-MS/MS and 67% in UPLC-ESI-MS/MS were unique. CZE-ESI-MS/MS favored basic and hydrophilic peptides with low molecular masses. Combining the two data sets increased the number of unique peptides by 53%. Our approach identified more than twice as many proteins as the previous record for capillary electrophoresis proteome analysis. CE-ESI-MS/MS is a useful tool for the analysis of proteome samples of intermediate complexity.


Scientific Reports | 2015

Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development

Liangliang Sun; Michelle M. Bertke; Matthew M. Champion; Guijie Zhu; Paul W. Huber; Norman J. Dovichi

While there is a rich literature on transcription dynamics during the development of many organisms, protein data is limited. We used iTRAQ isotopic labeling and mass spectrometry to generate the largest developmental proteomic dataset for any animal. Expression dynamics of nearly 4,000 proteins of Xenopus laevis was generated from fertilized egg to neurula embryo. Expression clusters into groups. The cluster profiles accurately reflect the major events that mark changes in gene expression patterns during early Xenopus development. We observed decline in the expression of ten DNA replication factors after the midblastula transition (MBT), including a marked decline of the licensing factor XCdc6. Ectopic expression of XCdc6 leads to apoptosis; temporal changes in this protein are critical for proper development. Measurement of expression in single embryos provided no evidence for significant protein heterogeneity between embryos at the same stage of development.


Analytical Chemistry | 2012

Quantitative multiple reaction monitoring of peptide abundance introduced via a capillary zone electrophoresis-electrospray interface.

Yihan Li; Roza Wojcik; Norman J. Dovichi; Matthew M. Champion

We demonstrate the use of capillary zone electrophoresis with an electrokinetic sheath-flow electrospray interface coupled to a triple-quadrupole mass spectrometer for the accurate and precise quantification of Leu-enkephalin in a complex mixture using multiple-reaction monitoring (MRM). Assay time is <6 min, with no re-equilibration required between runs. A standard curve of Leu-enkephalin was performed in the presence of a background tryptic digest of bovine albumin. We demonstrate reasonably reproducible peak heights (21% relative standard deviation), retention times (better than 1% relative standard deviation), and robust electrospray quality. Our limit of detection (3σ) was 60 pM, which corresponds to the injection of 335 zmol of peptide. This is a 10-20-fold improvement in mass sensitivity than we have obtained by nano HPLC/MRM and substantially better than reported for LC/MS/MS. Further quantification was performed in the presence of stable-isotope-labeled versions of the peptides; under these conditions, linearity was observed across nearly 4 orders of magnitude. The concentration detection limit was 240 pM for the stable-isotope-labeled quantification.


Journal of Immunology | 2012

Cutting Edge: Evidence for a Dynamically Driven T Cell Signaling Mechanism

William F. Hawse; Matthew M. Champion; Michelle V. Joyce; Lance M. Hellman; Moushumi Hossain; Veronica Ryan; Brian G. Pierce; Zhiping Weng; Brian M. Baker

T cells use the αβ TCR to bind peptides presented by MHC proteins (pMHC) on APCs. Formation of a TCR–pMHC complex initiates T cell signaling via a poorly understood process, potentially involving changes in oligomeric state, altered interactions with CD3 subunits, and mechanical stress. These mechanisms could be facilitated by binding-induced changes in the TCR, but the nature and extent of any such alterations are unclear. Using hydrogen/deuterium exchange, we demonstrate that ligation globally rigidifies the TCR, which via entropic and packing effects will promote associations with neighboring proteins and enhance the stability of existing complexes. TCR regions implicated in lateral associations and signaling are particularly affected. Computational modeling demonstrated a high degree of dynamic coupling between the TCR constant and variable domains that is dampened upon ligation. These results raise the possibility that TCR triggering could involve a dynamically driven, allosteric mechanism.


Scientific Reports | 2013

Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae

Samuel S. C. Rund; Nicolle A. Bonar; Matthew M. Champion; John P. Ghazi; Cameron M. Houk; Matthew T. Leming; Zainulabeuddin Syed; Giles E. Duffield

We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae.


Journal of Biological Chemistry | 2011

Activation of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus, Its Proteolytic Processing, and Recovery from Induction of Resistance

Leticia I. Llarrull; Marta Toth; Matthew M. Champion; Shahriar Mobashery

Background: Resistance to β-lactam antibiotics is regulated by the bla operon. Results: The fate of BlaR1, BlaI, and β-lactamase in the course of induction of resistance is evaluated. Conclusion: BlaR1 fragments in a specific way to allow recovery from induction of resistance. Significance: The processes of induction of resistance and recovery from it have been explained. The fates of BlaI, the gene repressor protein for the bla operon, BlaR1, the β-lactam sensor/signal transducer, and PC1 β-lactamase in four strains of Staphylococcus aureus upon exposure to four different β-lactam antibiotics were investigated as a function of time. The genes for the three proteins are encoded by the bla operon, the functions of which afford inducible resistance to β-lactam antibiotics in S. aureus. BlaR1 protein is expressed at low copy number. Acylation of the sensor domain of BlaR1 by β-lactam antibiotics initiates signal transduction to the cytoplasmic domain, a zinc protease, which is activated and degrades BlaI. This proteolytic degradation derepresses transcription of all three genes, resulting in inducible resistance. These processes take place within minutes of exposure to the antibiotics. The BlaR1 protein was shown to undergo fragmentation in three S. aureus strains within the time frame relevant for manifestation of resistance and was below the detection threshold in the fourth. Two specific sites of fragmentation were identified, one cytoplasmic and the other in the sensor domain. This is proposed as a means for turnover, a process required for recovery from induction of resistance in S. aureus in the absence of the antibiotic challenge. In S. aureus not exposed to β-lactam antibiotics (i.e. not acylated by antibiotic) the same fragmentation of BlaR1 is still observed, including the shedding of the sensor domain, an observation that leads to the conclusion that the sites of proteolysis might have evolved to predispose the protein to degradation within a set period of time.


ACS Chemical Biology | 2014

A Chemical Biological Strategy to Facilitate Diabetic Wound Healing

Major Gooyit; Zhihong Peng; William R. Wolter; Hualiang Pi; Derong Ding; Dusan Hesek; Mijoon Lee; Bill Boggess; Matthew M. Champion; Mark A. Suckow; Shahriar Mobashery; Mayland Chang

A complication of diabetes is the inability of wounds to heal in diabetic patients. Diabetic wounds are refractory to healing due to the involvement of activated matrix metalloproteinases (MMPs), which remodel the tissue resulting in apoptosis. There are no readily available methods that identify active unregulated MMPs. With the use of a novel inhibitor-tethered resin that binds exclusively to the active forms of MMPs, coupled with proteomics, we quantified MMP-8 and MMP-9 in a mouse model of diabetic wounds. Topical treatment with a selective MMP-9 inhibitor led to acceleration of wound healing, re-epithelialization, and significantly attenuated apoptosis. In contrast, selective pharmacological inhibition of MMP-8 delayed wound healing, decreased re-epithelialization, and exhibited high apoptosis. The MMP-9 activity makes the wounds refractory to healing, whereas that of MMP-8 is beneficial. The treatment of diabetic wounds with a selective MMP-9 inhibitor holds great promise in providing heretofore-unavailable opportunities for intervention of this disease.


Analytical Chemistry | 2014

Capillary Zone Electrophoresis–Electrospray Ionization-Tandem Mass Spectrometry for Top-Down Characterization of the Mycobacterium marinum Secretome

Yimeng Zhao; Liangliang Sun; Matthew M. Champion; Michael D. Knierman; Norman J. Dovichi

Capillary zone electrophoresis (CZE) with an electrokinetically pumped sheath-flow nanospray interface was coupled with a high-resolution Q-Exactive mass spectrometer for the analysis of culture filtrates from Mycobacterium marinum. We confidently identified 22 gene products from the wildtype M. marinum secretome in a single CZE–tandem mass spectrometry (MS/MS) run. A total of 58 proteoforms were observed with post-translational modifications including signal peptide removal, N-terminal methionine excision, and acetylation. The conductivities of aqueous acetic acid and formic acid solutions were measured from 0.1% to 100% concentration (v/v). Acetic acid (70%) provided lower conductivity than 0.25% formic acid and was evaluated as low ionic-strength and a CZE–MS compatible sample buffer with good protein solubility.


Analytical Chemistry | 2015

Coupling Capillary Zone Electrophoresis with Electron Transfer Dissociation and Activated Ion Electron Transfer Dissociation for Top-Down Proteomics

Yimeng Zhao; Nicholas M. Riley; Liangliang Sun; Alexander S. Hebert; Xiaojing Yan; Michael S. Westphall; Matthew J. P. Rush; Guijie Zhu; Matthew M. Champion; Felix Mba Medie; Patricia A. DiGiuseppe Champion; Joshua J. Coon; Norman J. Dovichi

Top-down proteomics offers the potential for full protein characterization, but many challenges remain for this approach, including efficient protein separations and effective fragmentation of intact proteins. Capillary zone electrophoresis (CZE) has shown great potential for separation of intact proteins, especially for differentially modified proteoforms of the same gene product. To date, however, CZE has been used only with collision-based fragmentation methods. Here we report the first implementation of electron transfer dissociation (ETD) with online CZE separations for top-down proteomics, analyzing a mixture of four standard proteins and a complex protein mixture from the Mycobacterium marinum bacterial secretome. Using a multipurpose dissociation cell on an Orbitrap Elite system, we demonstrate that CZE is fully compatible with ETD as well as higher energy collisional dissociation (HCD), and that the two complementary fragmentation methods can be used in tandem on the electrophoretic time scale for improved protein characterization. Furthermore, we show that activated ion electron transfer dissociation (AI-ETD), a recently introduced method for enhanced ETD fragmentation, provides useful performance with CZE separations to greatly increase protein characterization. When combined with HCD, AI-ETD improved the protein sequence coverage by more than 200% for proteins from both standard and complex mixtures, highlighting the benefits electron-driven dissociation methods can add to CZE separations.


Biomaterials | 2013

Selective photocrosslinking of functional ligands to antibodies via the conserved nucleotide binding site.

Nathan J. Alves; Matthew M. Champion; Jared F. Stefanick; Michael W. Handlogten; Demetri T. Moustakas; Yunhua Shi; Bryan F. Shaw; Rudolph M. Navari; Tanyel Kiziltepe; Basar Bilgicer

The conserved nucleotide binding site (NBS), found in the Fab variable domain of all antibody isotypes, remains a not-so-widely known and under-utilized site. Here, we describe a UV photocrosslinking method (UV-NBS) that utilizes the NBS for site-specific covalent functionalization of antibodies, while preserving antibody activity. We identified a small molecule, indole-3-butyric acid (IBA), which has affinity for the NBS (K(d) = 1-8 μM) and can be photocrosslinked to antibodies upon UV energy exposure. By synthesizing their IBA conjugated versions, we have successfully photocrosslinked various types of functional ligands to antibodies at the NBS, including affinity tags (biotin), fluorescent molecules (FITC), peptides (iRGD), and chemotherapeutics (paclitaxel). An optimal UV exposure of 1-2 J/cm(2) yielded the most efficient photocrosslinking and resulted in 1-2 conjugations per antibody, while preserving the antigen binding activity and Fc related functions. Analysis of the photocrosslinked conjugates using western blotting, mass spectrometry, and computational docking simulations demonstrated that the photocrosslinking specifically takes place at the Y/F42 residue in framework region 2 of the antibody light chain. Taken together, the UV-NBS method provides a practical, site-specific, and chemically efficient method to functionalize antibodies with significant implications in diagnostic and therapeutic settings.

Collaboration


Dive into the Matthew M. Champion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liangliang Sun

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guijie Zhu

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roza Wojcik

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yimeng Zhao

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Huber

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge