Matthew M. Hall
Alfred University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew M. Hall.
Journal of Biomedical Materials Research Part A | 2009
Elizabeth A. Varmette; Jessica R. Nowalk; Lisa M. Flick; Matthew M. Hall
The attenuation of an in vitro inflammatory response in RAW 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) endotoxin was tested using sol-gel-derived bioactive glasses. Three general types of sol-gel-derived samples were evaluated: 58S, zinc-containing glasses, and copper-containing glasses. Distinct experimental procedures were used to test the potential of bioactive glasses to attenuate the inflammatory response in three situations: (1) therapeutically following LPS stimulation, (2) prophylactically before LPS stimulation of macrophages, and (3) indirectly via the glass dissolution products after stimulation with LPS. A sandwich enzyme-linked immunosorbent assay (ELISA) was used to monitor the concentration of tumor necrosis factor-alpha (TNF-alpha) secreted by macrophage cells. The strongest reduction in TNF-alpha concentration was observed when macrophage cells were first incubated with bioactive glass powder and then stimulated with LPS. This suggests a possible prophylactic application of these bioactive glasses for the prevention of inflammation. The 58S glass was capable of reducing the expression of TNF-alpha by macrophages, although the zinc- and copper-containing were more effective at suppressing the inflammatory response. The additional benefit of using zinc- and copper-doped bioactive glasses may be explained by the direct interactions of zinc and copper ions in key regulatory pathways for the inflammation response.
Archive | 2009
James E. Shelby; Matthew M. Hall; Michael J. Snyder; Peter B. Wachtel
The primary goal of this project is to demonstrate that hydrogen gas can be rapidly extracted from hollow glass microspheres (HGMS) using a photo-induced heating effect. The results of the project demonstrate that diffusion of hydrogen is readily induced by exposure to light from an IR lamp in transition metal-doped HGMS filled to as much as 5,000 psi with hydrogen gas, which contain approximately 2.2 wt% hydrogen. Doped HGMS in conjunction with optically induced outgassing provide a solution to the traditional limitation of HGMS – i.e., the slow release of hydrogen from HGMS that are heated using a furnace. This information will also be invaluable in designing process changes for future production of HGMS able to hold higher pressures of hydrogen.
Journal of Biomaterials Applications | 2015
Lm Haas; Cm Smith; Lana M. Placek; Matthew M. Hall; Yuxuan Gong; Nathan P. Mellott; Anthony W. Wren
Silver (Ag) coatings have been incorporated into many medical materials due to its ability to eradicate harmful microbes. In this study, glass microspheres (SiO2–Na2O–CaO–Al2O3) were synthesized and employed as substrates to investigate the effect Ag coating has on glass solubility and the subsequent biological effects. Initially, glasses were amorphous with a glass transition point (Tg) of 605℃ and microspheres were spherical with a mean particle diameter of 120 µm (±27). The Ag coating was determined to be crystalline in nature and its presence was confirmed using scanning electron microscopy and X-ray photoelectron spectroscopy. Ion release determined that Ag-coated (Ag-S) microspheres increased the Na+ release rate but slightly reduced the Ca2+ and Si4+ release compared to an uncoated control (UC-S). Additionally, the Ag-S reduced the pH to just above neutral (7.3–8.5) compared to the UC-S (7.7–9.1). Antibacterial testing determined significant reductions in planktonic Escherichia coli (p = 0.000), Staphylococcus epidermidis (p = 0.000) and Staphylococcus aureus (p = 0.000) growth as a function of the presence of Ag and with respect to maturation (1, 7, and 30 days). Testing for toxicity levels using L929 Fibroblasts determined higher cell viability for the Ag-S at lower concentrations (5 µg/ml); in addition, no significant reduction in cell viability was observed with higher concentrations (15, 30 µg/ml).
Journal of Physics: Condensed Matter | 2003
Alexis G. Clare; Matthew M. Hall; Michelle L. Korwin-Edson; Alan H. Goldstein
This paper introduces the concept of biomolecular characterization of inorganic surfaces. The choice of biomolecule is discussed followed by techniques that can be used to analyse the quantity of bound species, strength of binding, the nature of binding sites, conformational changes and the layer morphology. The prospects of modelling this data using a combination of molecular dynamics simulation and protein structural modelling and the correlation to measured data are outlined. The studies described in this paper are directed toward assessing the feasibility of biomolecular characterization, however, the data collected in the process are designed to also help elucidate our understanding of the interaction between biomolecular species and inorganic materials interfaces.
Journal of Biomaterials Applications | 2016
Timothy J. Keenan; Lana M. Placek; Nl Keenan; Matthew M. Hall; Anthony W. Wren
A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40–x)ZnO-(x)Ga2O3) was incorporated in carboxymethyl cellulose–dextran hydrogels at three different loadings (0.05, 0.10, and 0.25 m2), and the resulting composites were characterized using scanning electron microscopy, physical swelling characteristics, and inductively coupled plasma optical emission spectroscopy. In vitro cytocompatibility was also evaluated for composite extracts in contact with L-929 mouse fibroblasts and MC3T3-E1 human osteoblasts. Scanning electron microscopy confirmed that glass particles were distributed throughout the hydrogels, and swelling studies showed that glass presence can increase the amount of fluid that can be absorbed by the hydrogels after seven days of immersion in phosphate-buffered saline by up to 180%. Several trends were observed in the inductively coupled plasma optical emission spectroscopy data, with the most important being the release of Ga3+ from both Ga-containing glasses at all three loadings, with a maximum of 4.7 mg/L released after 30 days of incubation in phosphate-buffered saline. Cell viability analysis suggested that most composite extracts did not decrease neither fibroblast nor osteoblast viability. These results indicate that it is possible to embed bioactive glass particles into carboxymethyl cellulose–dextran hydrogels, and upon submersion in aqueous media, release ions from the glass particles that may elicit therapeutic effects.
Carbohydrate Polymers | 2016
Timothy J. Keenan; Lana M. Placek; A. Coughlan; G.M. Bowers; Matthew M. Hall; Anthony W. Wren
A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications.
Journal of Pharmaceutical Sciences | 2013
Nathan W. Kucko; Timothy J. Keenan; A. Coughlan; Matthew M. Hall
The chemical durability of glass vials for parenteral packaging is typically assessed by completely filling the vial with a medium of interest. This testing approach can mask the heterogeneous dissolution behavior of vials produced by conversion of glass tubing. In this study, the corrosion behavior of vials provided by four suppliers was evaluated as a function of fill volume. Vials were filled with incrementally increasing volumes of water for injection (WFI) up to near-maximum capacity and then autoclaved. The pH and levels of extracted ions were measured. The pH of autoclaved WFI generally increased for low fill volumes relative to pure WFI, presumably because of extraction of alkali from the heel region. The pH was found to generally decrease with increasing fill volume as the concentration of extractables was diluted. Analysis of dissolution profiles supports the altered surface chemistry of the heel region relative to the body. The results of this study demonstrate the potential limitations of conventional hydrolytic resistance tests and the susceptibility of the heel region to aqueous corrosion.
2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC) | 2015
Timothy J. Keenan; Matthew M. Hall; Anthony W. Wren
This study aims to investigate the solubility of composites comprised of a degradable polymeric hydrogel and particles of a Ga-containing glass series, and relate this solubility information to the viability of MC-3T3 osteoblasts. Composites released a maximum of 4.7 mg/L of Ga after 30 days, and these extracts did not inhibit osteoblast viability.
northeast bioengineering conference | 2014
Timothy J. Keenan; Anthony W. Wren; Matthew M. Hall
The overall goal of this project is to synthesize a degradable polymer hydrogel, which has the ability to act as a scaffold upon which therapeutic materials, particularly, Ga-containing bioactive glasses, can be seeded, while also allowing the ionic dissolution products of the glasses to interact with host tissues and fluids within the local environment.
northeast bioengineering conference | 2013
Timothy J. Keenan; Anthony W. Wren; A. Coughlan; Mark R. Towler; Matthew M. Hall
Three glasses were designed for this study, including one Ga-free glass (Control), and two Ga-containing glasses (TGa-1, TGa-2). In the Ga-containing glasses, Ga2O3 is included at the expense of ZnO. This study focuses on the relation between pH and ion concentration present in solution in which these bioactive glasses have been submerged for periods of 1, 7, and 14 days.