Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew M. Rankin is active.

Publication


Featured researches published by Matthew M. Rankin.


Diabetes | 2009

Adaptive β-Cell Proliferation Is Severely Restricted With Advanced Age

Matthew M. Rankin; Jake A. Kushner

OBJECTIVE Regeneration of the insulin-secreting β-cells is a fundamental research goal that could benefit patients with either type 1 or type 2 diabetes. β-Cell proliferation can be acutely stimulated by a variety of stimuli in young rodents. However, it is unknown whether this adaptive β-cell regeneration capacity is retained into old age. RESEARCH DESIGN AND METHODS We assessed adaptive β-cell proliferation capacity in adult mice across a wide range of ages with a variety of stimuli: partial pancreatectomy, low-dose administration of the β-cell toxin streptozotocin, and exendin-4, a glucagon-like peptide 1 (GLP-1) agonist. β-Cell proliferation was measured by administration of 5-bromo-2′-deoxyuridine (BrdU) in the drinking water. RESULTS Basal β-cell proliferation was severely decreased with advanced age. Partial pancreatectomy greatly stimulated β-cell proliferation in young mice but failed to increase β-cell replication in old mice. Streptozotocin stimulated β-cell replication in young mice but had little effect in old mice. Moreover, administration of GLP-1 agonist exendin-4 stimulated β-cell proliferation in young but not in old mice. Surprisingly, adaptive β-cell proliferation capacity was minimal after 12 months of age, which is early middle age for the adult mouse life span. CONCLUSIONS Adaptive β-cell proliferation is severely restricted with advanced age in mice, whether stimulated by partial pancreatectomy, low-dose streptozotocin, or exendin-4. Thus, β-cells in middle-aged mice appear to be largely postmitotic. Young rodents may not faithfully model the regenerative capacity of β-cells in mature adult mice.


Journal of Biological Chemistry | 2010

Calcineurin Signaling Regulates Human Islet β-Cell Survival

Scott A. Soleimanpour; Michael F. Crutchlow; Alana M. Ferrari; Jeffrey C. Raum; David N. Groff; Matthew M. Rankin; Chengyang Liu; Diva D. De León; Ali Naji; Jake A. Kushner; Doris A. Stoffers

The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic β-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant β-cell failure. We sought to determine the effect of calcineurin inhibition on β-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue β-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human β-cell apoptosis was significantly increased. Although we detected no human β-cell replication, tacrolimus significantly decreased rodent β-cell replication. Ex-4 nearly normalized both human β-cell survival and rodent β-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in β-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human β-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation.


Diabetes | 2013

β-Cells Are Not Generated in Pancreatic Duct Ligation–Induced Injury in Adult Mice

Matthew M. Rankin; Christopher J. Wilbur; Kimberly Rak; Emily J. Shields; Anne Granger; Jake A. Kushner

The existence of adult β-cell progenitors remains the most controversial developmental biology topic in diabetes research. It has been reported that β-cell progenitors can be activated by ductal ligation–induced injury of adult mouse pancreas and apparently act in a cell-autonomous manner to double the functional β-cell mass within a week by differentiation and proliferation. Here, we demonstrate that pancreatic duct ligation (PDL) does not activate progenitors to contribute to β-cell mass expansion. Rather, PDL stimulates massive pancreatic injury, which alters pancreatic composition and thus complicates accurate measurement of β-cell content via traditional morphometry methodologies that superficially sample the pancreas. To overcome this potential bias, we quantified β-cells from the entire pancreas and observed that β-cell mass and insulin content are totally unchanged by PDL-induced injury. Lineage-tracing studies using sequential administration of thymidine analogs, rat insulin 2 promoter–driven cre-lox, and low-frequency ubiquitous cre-lox reveal that PDL does not convert progenitors to the β-cell lineage. Thus, we conclude that β-cells are not generated in injured adult mouse pancreas.


Journal of Biological Chemistry | 2005

Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis

Jake A. Kushner; Laura Simpson; Lynn M. Wartschow; Shaodong Guo; Matthew M. Rankin; Ramon Parsons; Morris F. White

The Irs2 branch of the insulin/insulin-like growth factor signaling cascade activates the phosphatidylinositol 3-kinase → Akt → Foxo1 cascade in many tissues, including hepatocytes and pancreatic β-cells. The 3′-lipid phosphatase Pten ordinarily attenuates this cascade; however, its influence on β-cell growth or function is unknown. To determine whether decreased Pten expression could restore β-cell function and prevent diabetes in Irs2-/- mice, we generated wild type or Irs2 knock-out mice that were haploinsufficient for Pten (Irs2-/-::Pten+/-). Irs2-/- mice develop diabetes by 3 months of age as β-cell mass declined progressively until insulin production was lost. Pten insufficiency increased peripheral insulin sensitivity in wild type and Irs2-/- mice and increased Akt and Foxo1 phosphorylation in the islets. Glucose tolerance improved in the Pten+/- mice, although β-cell mass and circulating insulin levels decreased. Compared with Irs2-/- mice, the Irs2-/-::Pten+/- mice displayed nearly normal glucose tolerance and survived without diabetes, because normal but small islets produced sufficient insulin until the mice died of lymphoproliferative disease at 12 months age. Thus, steps to enhance phosphatidylinositol 3-kinase signaling can promote β-cell growth, function, and survival without the Irs2 branch of the insulin/insulin-like growth factor signaling cascade.


Molecular Endocrinology | 2009

Cyclin D2 Protein Stability Is Regulated in Pancreatic β-Cells

Lu Mei He; Daniel J. Sartori; Monica Teta; Lynn M. Opare-Addo; Matthew M. Rankin; Simon Y. Long; J. Alan Diehl; Jake A. Kushner

The molecular determinants of beta-cell mass expansion remain poorly understood. Cyclin D2 is the major D-type cyclin expressed in beta-cells, essential for adult beta-cell growth. We hypothesized that cyclin D2 could be actively regulated in beta-cells, which could allow mitogenic stimuli to influence beta-cell expansion. Cyclin D2 protein was sharply increased after partial pancreatectomy, but cyclin D2 mRNA was unchanged, suggesting posttranscriptional regulatory mechanisms influence cyclin D2 expression in beta-cells. Consistent with this hypothesis, cyclin D2 protein stability is powerfully regulated in fibroblasts. Threonine 280 of cyclin D2 is phosphorylated, and this residue critically limits D2 stability. We derived transgenic (tg) mice with threonine 280 of cyclin D2 mutated to alanine (T280A) or wild-type cyclin D2 under the control of the insulin promoter. Cyclin D2 T280A protein was expressed at much higher levels than wild-type cyclin D2 protein in beta-cells, despite equivalent expression of tg mRNAs. Cyclin D2 T280A tg mice exhibited a constitutively nuclear cyclin D2 localization in beta-cells, and increased cyclin D2 stability in islets. Interestingly, threonine 280-mutant cyclin D2 tg mice had greatly reduced beta-cell apoptosis, with suppressed expression of proapoptotic genes. Suppressed beta-cell apoptosis in threonine 280-mutant cyclin D2 tg mice resulted in greatly increased beta-cell area in aged mice. Taken together, these data indicate that cyclin D2 is regulated by protein stability in pancreatic beta-cells, that signals that act upon threonine 280 limit cyclin D2 stability in beta-cells, and that threonine 280-mutant cyclin D2 overexpression prolongs beta-cell survival and augments beta-cell mass expansion.


Journal of Visualized Experiments | 2010

Immunofluorescent Detection of Two Thymidine Analogues (CldU and IdU) in Primary Tissue

Alex H. Tuttle; Matthew M. Rankin; Monica Teta; Daniel J. Sartori; Geneva M. Stein; Gina J. Kim; Cristina Virgilio; Anne Granger; Di Zhou; Simon H. Long; Alisa B. Schiffman; Jake A. Kushner

Accurate measurement of cell division is a fundamental challenge in experimental biology that becomes increasingly complex when slowly dividing cells are analyzed. Established methods to detect cell division include direct visualization by continuous microscopy in cell culture, dilution of vital dyes such as carboxyfluorescein di-aetate succinimidyl ester (CFSE), immuno-detection of mitogenic antigens such as ki67 or PCNA, and thymidine analogues. Thymidine analogues can be detected by a variety of methods including radio-detection for tritiated thymidine, immuno-detection for bromo-deoxyuridine (BrdU), chloro-deoxyuridine (CldU) and iodo-deoxyuridine (IdU), and chemical detection for ethinyl-deoxyuridine (EdU). We have derived a strategy to detect sequential incorporation of different thymidine analogues (CldU and IdU) into tissues of adult mice. Our method allows investigators to accurately quantify two successive rounds of cell division. By optimizing immunostaining protocols our approach can detect very low dose thymidine analogues administered via the drinking water, safe to administer to mice for prolonged periods of time. Consequently, our technique can be used to detect cell turnover in very long-lived tissues. Optimal immunofluoresent staining results can be achieved in multiple tissue types, including pancreas, skin, gut, liver, adrenal, testis, ovary, thyroid, lymph node, and brain. We have also applied this technique to identify oncogenic transformation within tissues. We have further applied this technique to determine if transit-amplifying cells contribute to growth or renewal of tissues. In this sense, sequential administration of thymidine analogues represents a novel approach for studying the origins and survival of cells involved in tissue homeostasis.


Islets | 2010

Aging induces a distinct gene expression program in mouse islets

Matthew M. Rankin; Jake A. Kushner

The role of aging in the pathogenesis of type 2 diabetes remains poorly understood. In the past adult β-cells were assumed to undergo frequent turnover. However, we find that β-cell turnover declines to very low levels in middle-aged mice. We therefore hypothesized that aged islets could exhibit a distinct gene expression program. We compared gene expression in islets from young mice to islets from aged mice under basal conditions. Aging was associated with differential expression of many genes in islets, including mRNAs encoding for chromatin remodeling components, RNA binding proteins, and pancreatic endocrine transcription factors. We previously observed that cell cycle entry of β-cells is severely restricted by middle age, with minimal of β-cell proliferation in response to regenerative stimuli such as 50% partial pancreatectomy. To characterize the effect of age in adaptive β-cell proliferation, we measured gene expression in islets from young mice after pancreatectomy. As expected, partial pancreatectomy induced differential expression of many genes, including those encoding Reg (regenerating) proteins. Surprisingly, partial pancreatectomy also induced expression of Reg genes in islets from aged mice, which have greatly reduced capacity for adaptive β-cell proliferation. However, there was little overlap (besides the Reg genes) in between the partial pancreatectomy induced islet genes in young mice versus old mice. Thus, partial pancreatectomy does not induce the same gene expression program in young mice vs old mice. Taken together, our results reveal that aged islets exhibit a unique gene expression signature that could contribute to the limited regenerative capacity of mature β-cells.


Molecular Endocrinology | 2014

GATA factors promote ER integrity and β-cell survival and contribute to type 1 diabetes risk.

Daniel J. Sartori; Christopher J. Wilbur; Simon Y. Long; Matthew M. Rankin; Changhong Li; Jonathan P. Bradfield; Hakon Hakonarson; Struan F. A. Grant; William T. Pu; Jake A. Kushner

Pancreatic β-cell survival remains poorly understood despite decades of research. GATA transcription factors broadly regulate embryogenesis and influence survival of several cell types, but their role in adult β-cells remains undefined. To investigate the role of GATA factors in adult β-cells, we derived β-cell-inducible Gata4- and Gata6-knockout mice, along with whole-body inducible Gata4 knockouts. β-Cell Gata4 deletion modestly increased the proportion of dying β-cells in situ with ultrastructural abnormalities suggesting endoplasmic reticulum (ER) stress. Notably, glucose homeostasis was not grossly altered in Gata4- and Gata6-knockout mice, suggesting that GATA factors do not have essential roles in β-cells. Several ER stress signals were up-regulated in Gata4 and Gata6 knockouts, most notably CHOP, a known regulator of ER stress-induced apoptosis. However, ER stress signals were not elevated to levels observed after acute thapsigargin administration, suggesting that GATA deficiency only caused mild ER stress. Simultaneous deletion of Gata4 and CHOP partially restored β-cell survival. In contrast, whole-body inducible Gata4 knockouts displayed no evidence of ER stress in other GATA4-enriched tissues, such as heart. Indeed, distinct GATA transcriptional targets were differentially expressed in islets compared with heart. Such β-cell-specific findings prompted study of a large meta-analysis dataset to investigate single nucleotide polymorphisms harbored within the human GATA4 locus, revealing several variants significantly associated with type 1 diabetes mellitus. We conclude that GATA factors have important but nonessential roles to promote ER integrity and β-cell survival in a tissue-specific manner and that GATA factors likely contribute to type 1 diabetes mellitus pathogenesis.


The Journal of Clinical Endocrinology and Metabolism | 2017

β Cells Persist in T1D Pancreata Without Evidence of Ongoing β-Cell Turnover or Neogenesis

Carol J. Lam; Daniel R. Jacobson; Matthew M. Rankin; Aaron R. Cox; Jake A. Kushner

Context The cellular basis of persistent β-cell function in type 1 diabetes (T1D) remains enigmatic. No extensive quantitative β-cell studies of T1D pancreata have been performed to test for ongoing β-cell regeneration or neogenesis. Objective We sought to determine the mechanism of β-cell persistence in T1D pancreata. Design We studied T1D (n = 47) and nondiabetic control (n = 59) pancreata over a wide range of ages from the Juvenile Diabetes Research Foundation Network of Pancreatic Organ Donors with Diabetes via high-throughput microscopy. Intervention and Main Outcome Measures We quantified β-cell mass, β-cell turnover [via Ki-67 and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL)], islet ductal association, and insulin/glucagon coexpression in T1D and control pancreata. Results Residual insulin-producing β cells were detected in some (but not all) T1D cases of varying disease duration. Several T1D pancreata had substantial numbers of β cells. Although β-cell proliferation was prominent early in life, it dramatically declined after infancy in both nondiabetic controls and T1D individuals. However, β-cell proliferation was equivalent in control and T1D pancreata. β-cell death (assessed by TUNEL) was extremely rare in control and T1D pancreata. Thus, β-cell turnover was not increased in T1D. Furthermore, we found no evidence of small islet/ductal neogenesis or α-cell to β-cell transdifferentiation in T1D pancreata, regardless of disease duration. Conclusion Longstanding β-cell function in patients with T1D appears to be largely a result of β cells that persist, without any evidence of attempted β-cell regeneration, small islet/ductal neogenesis, or transdifferentiation from other islet endocrine cell types.


Endocrinology | 2017

Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice

Aaron R. Cox; Carol J. Lam; Matthew M. Rankin; Jacqueline S. Rios; Julia Chavez; Claire W. Bonnyman; Kourtney B. King; Roger A. Wells; Deepti Anthony; Justin X. Tu; Jenny J. Kim; Changhong Li; Jake A. Kushner

The impact of incretins upon pancreatic β-cell expansion remains extremely controversial. Multiple studies indicate that incretin-based therapies can increase β-cell proliferation, and incretins have been hypothesized to expand β-cell mass. However, disagreement exists on whether incretins increase β-cell mass. Moreover, some reports indicate that incretins may cause metaplastic changes in pancreatic histology. To resolve these questions, we treated a large cohort of mice with incretin-based therapies and carried out a rigorous analysis of β-cell turnover and pancreatic histology using high-throughput imaging. Young mice received exenatide via osmotic pump, des-fluoro-sitagliptin, or glipizide compounded in diet for 2 weeks (short-term) on a low-fat diet (LFD) or 4.5 months (long-term) on a LFD or high-fat diet (HFD). Pancreata were quantified for β-cell turnover and mass. Slides were examined for gross anatomical and microscopic changes to exocrine pancreas. Short-term des-fluoro-sitagliptin increased serum insulin and induced modest β-cell proliferation but no change in β-cell mass. Long-term incretin therapy in HFD-fed mice resulted in reduced weight gain, improved glucose homeostasis, and abrogated β-cell mass expansion. No evidence for rapidly dividing progenitor cells was found in islets or pancreatic parenchyma, indicating that incretins do not induce islet neogenesis or pancreatic metaplasia. Contrasting prior reports, we found no evidence of β-cell mass expansion after acute or chronic incretin therapy. Chronic incretin administration was not associated with histological abnormalities in pancreatic parenchyma; mice did not develop tumors, pancreatitis, or ductal hyperplasia. We conclude that incretin therapies do not generate β-cells or alter pancreatic histology in young mice.

Collaboration


Dive into the Matthew M. Rankin's collaboration.

Top Co-Authors

Avatar

Jake A. Kushner

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Aaron R. Cox

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Carol J. Lam

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Monica Teta

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Changhong Li

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Sartori

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Anne Granger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Wilbur

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily J. Shields

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge