Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew M. Skinner is active.

Publication


Featured researches published by Matthew M. Skinner.


eLife | 2015

Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa

Lee R. Berger; John Hawks; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Lucas K. Delezene; Tracy L. Kivell; Heather M. Garvin; Scott A. Williams; Jeremy M. DeSilva; Matthew M. Skinner; Charles M. Musiba; Noel Cameron; Trenton W. Holliday; William E. H. Harcourt-Smith; Rebecca Rogers Ackermann; Markus Bastir; Barry Bogin; Debra R. Bolter; Juliet K. Brophy; Zachary Cofran; Kimberly A. Congdon; Andrew S. Deane; Mana Dembo; Michelle S.M. Drapeau; Marina Elliott; Elen M Feuerriegel; Daniel García-Martínez; David J. Green; Alia N. Gurtov

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001


Journal of Human Evolution | 2008

Dental tissue proportions and enamel thickness in Neandertal and modern human molars.

Anthony J. Olejniczak; Tanya M. Smith; Robin N. M. Feeney; Roberto Macchiarelli; Arnaud Mazurier; Luca Bondioli; Antonio Rosas; Javier Fortea; Marco de la Rasilla; Antonio García-Tabernero; Jakov Radovčić; Matthew M. Skinner; Michel Toussaint; Jean-Jacques Hublin

The thickness of dental enamel is often discussed in paleoanthropological literature, particularly with regard to differences in growth, health, and diet between Neandertals and modern humans. Paleoanthropologists employ enamel thickness in paleodietary and taxonomic studies regarding earlier hominins, but variation in enamel thickness within the genus Homo has not been thoroughly explored despite its potential to discriminate species and its relevance to studies of growth and development. Radiographic two-dimensional studies indicate that Neandertal molar enamel is thin relative to the thick enamel of modern humans, although such methods have limited accuracy. Here we show that, measured via accurate high-resolution microtomographic imaging, Neandertal molar enamel is absolutely and relatively thinner than modern human enamel at most molar positions. However, this difference relates to the ratio of coronal dentine volume to total crown volume, rather than the quantity of enamel per se. The absolute volume of Neandertal molar enamel is similar to that of modern humans, but Neandertal enamel is deposited over a larger volume of coronal dentine, resulting in lower average (and relative) enamel thickness values. Sample sizes do not permit rigorous intragroup comparisons, but Neandertal molar tissue proportions evince less variation than the modern human sample. Differences in three- and two-dimensional enamel thickness data describing Neandertal molars may be explained by dimensional reduction. Although molar tissue proportions distinguish Neanderthals from recent Homo sapiens, additional study is necessary to assess trends in tissue proportions in the genus Homo throughout the Pleistocene.


Science | 2015

Human-like hand use in Australopithecus africanus

Matthew M. Skinner; Nicholas B. Stephens; Zewdi J. Tsegai; Alexandra C. Foote; Huynh Nhu Nguyen; Thomas Gross; Dieter H. Pahr; Jean-Jacques Hublin; Tracy L. Kivell

Getting a grip The evolution of the hand—particularly the opposable thumb—was key to the success of early humans. Without a precise grip, involving forceful opposition of thumb with fingers, tool technology could not have emerged. Skinner et al. analyzed the internal bone structure of Pliocene Australopithecus hands, dated at 3.2 million years old. Internal bone structure reveals the patterns and directions of forces operating on the hand, providing clues to the kinds of activities performed. Modern human-like hand postures consistent with the habitual use of tools appeared about half a million years earlier than the first archaeological evidence of stone tools. Science, this issue p. 395 The internal bone structure of Pliocene australopiths suggests that precision grip evolved 3.2 million years ago. The distinctly human ability for forceful precision and power “squeeze” gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neandertals made the first specialized bone tools in Europe

Marie Soressi; Shannon P. McPherron; Michel Lenoir; Tamara Dogandzic; Paul Goldberg; Zenobia Jacobs; Yolaine Maigrot; Naomi Martisius; Christopher E. Miller; William Rendu; Michael P. Richards; Matthew M. Skinner; Teresa E. Steele; Sahra Talamo; Jean-Pierre Texier

Modern humans replaced Neandertals ∼40,000 y ago. Close to the time of replacement, Neandertals show behaviors similar to those of the modern humans arriving into Europe, including the use of specialized bone tools, body ornaments, and small blades. It is highly debated whether these modern behaviors developed before or as a result of contact with modern humans. Here we report the identification of a type of specialized bone tool, lissoir, previously only associated with modern humans. The microwear preserved on one of these lissoir is consistent with the use of lissoir in modern times to obtain supple, lustrous, and more impermeable hides. These tools are from a Neandertal context proceeding the replacement period and are the oldest specialized bone tools in Europe. As such, they are either a demonstration of independent invention by Neandertals or an indication that modern humans started influencing European Neandertals much earlier than previously believed. Because these finds clearly predate the oldest known age for the use of similar objects in Europe by anatomically modern humans, they could also be evidence for cultural diffusion from Neandertals to modern humans.


Science | 2015

Human-like hand-use in the hand of Australopithecus africanus

Matthew M. Skinner; Nicholas B. Stephens; Zewdi J. Tsegai; Alexandra C. Foote; N Huynh Nguyen; Thomas Gross; Dieter H. Pahr; Jean-Jacques Hublin; Tracy L. Kivell

Getting a grip The evolution of the hand—particularly the opposable thumb—was key to the success of early humans. Without a precise grip, involving forceful opposition of thumb with fingers, tool technology could not have emerged. Skinner et al. analyzed the internal bone structure of Pliocene Australopithecus hands, dated at 3.2 million years old. Internal bone structure reveals the patterns and directions of forces operating on the hand, providing clues to the kinds of activities performed. Modern human-like hand postures consistent with the habitual use of tools appeared about half a million years earlier than the first archaeological evidence of stone tools. Science, this issue p. 395 The internal bone structure of Pliocene australopiths suggests that precision grip evolved 3.2 million years ago. The distinctly human ability for forceful precision and power “squeeze” gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.


Journal of Human Evolution | 2008

Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus

Matthew M. Skinner; Philipp Gunz; Jean-Jacques Hublin

Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.


Biology Letters | 2008

Three-dimensional molar enamel distribution and thickness in Australopithecus and Paranthropus

Anthony J. Olejniczak; Tanya M. Smith; Matthew M. Skinner; Frederick E. Grine; Robin N. M. Feeney; John Francis Thackeray; Jean-Jacques Hublin

Thick molar enamel is among the few diagnostic characters of hominins which are measurable in fossil specimens. Despite a long history of study and characterization of Paranthropus molars as relatively ‘hyper-thick’, only a few tooth fragments and controlled planes of section (designed to be proxies of whole-crown thickness) have been measured. Here, we measure molar enamel thickness in Australopithecus africanus and Paranthropus robustus using accurate microtomographic methods, recording the whole-crown distribution of enamel. Both taxa have relatively thick enamel, but are thinner than previously characterized based on two-dimensional measurements. Three-dimensional measurements show that P. robustus enamel is not hyper-thick, and A. africanus enamel is relatively thinner than that of recent humans. Interspecific differences in the whole-crown distribution of enamel thickness influence cross-sectional measurements such that enamel thickness is exaggerated in two-dimensional sections of A. africanus and P. robustus molars. As such, two-dimensional enamel thickness measurements in australopiths are not reliable proxies for the three-dimensional data they are meant to represent. The three-dimensional distribution of enamel thickness shows different patterns among species, and is more useful for the interpretation of functional adaptations than single summary measures of enamel thickness.


American Journal of Physical Anthropology | 2009

Discrimination of extant Pan species and subspecies using the enamel–dentine junction morphology of lower molars

Matthew M. Skinner; Philipp Gunz; Christophe Boesch; Jean-Jacques Hublin

Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel-dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro-computed tomography was employed to non-destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars.


PLOS ONE | 2013

Trabecular bone structure correlates with hand posture and use in hominoids.

Zewdi J. Tsegai; Tracy L. Kivell; Thomas Gross; Huynh Nhu Nguyen; Dieter H. Pahr; Jeroen B. Smaers; Matthew M. Skinner

Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Youngs modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates.


Journal of Human Evolution | 2009

Protostylid expression at the enamel-dentine junction and enamel surface of mandibular molars of Paranthropus robustus and Australopithecus africanus.

Matthew M. Skinner; Jean-Jacques Hublin

Distinctive expressions and incidences of discrete dental traits at the outer enamel surface (OES) contribute to the diagnoses of many early hominin taxa. Examination of the enamel-dentine junction (EDJ), imaged non-destructively using micro-computed tomography, has elucidated the morphological development of dental traits and improved interpretations of their variability within and among taxa. The OES expressions of one of these dental traits, the protostylid, have been found to differ among African Plio-Pleistocene fossil hominin taxa. In this study protostylid expression is examined at the OES and at the EDJ of Paranthropus robustus (n=23) and Australopithecus africanus (n=28) mandibular molars, with the goals of incorporating EDJ morphology into the definition of the protostylid and assessing the relative contribution of the EDJ and enamel cap to its expression in these taxa. The results provide evidence (a) of statistically significant taxon-specific patterns of protostylid morphology at the EDJ that are not evident at the OES; (b) that in P. robustus, thick enamel reduces the morphological correspondence between the form of the protostylid seen at the EDJ and the OES, and (c) that if EDJ images can be obtained, then the protostylid retains its taxonomic value even in worn teeth.

Collaboration


Dive into the Matthew M. Skinner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter H. Pahr

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Gross

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge