Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew N. Hill is active.

Publication


Featured researches published by Matthew N. Hill.


Nature Neuroscience | 2015

Mechanisms of stress in the brain

Bruce S. McEwen; Nicole P. Bowles; Jason D. Gray; Matthew N. Hill; Richard G. Hunter; Ilia N. Karatsoreos; Carla Nasca

The brain is the central organ involved in perceiving and adapting to social and physical stressors via multiple interacting mediators, from the cell surface to the cytoskeleton to epigenetic regulation and nongenomic mechanisms. A key result of stress is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicates failed resilience. Excitatory amino acids and glucocorticoids have key roles in these processes, along with a growing list of extra- and intracellular mediators that includes endocannabinoids and brain-derived neurotrophic factor (BDNF). The result is a continually changing pattern of gene expression mediated by epigenetic mechanisms involving histone modifications and CpG methylation and hydroxymethylation as well as by the activity of retrotransposons that may alter genomic stability. Elucidation of the underlying mechanisms of plasticity and vulnerability of the brain provides a basis for understanding the efficacy of interventions for anxiety and depressive disorders as well as age-related cognitive decline.


Neuropsychopharmacology | 2005

Downregulation of Endocannabinoid Signaling in the Hippocampus Following Chronic Unpredictable Stress

Matthew N. Hill; Sachin Patel; Erica J. Carrier; David J. Rademacher; Brandi K Ormerod; Cecilia J. Hillard; Boris B. Gorzalka

Deficits in cognitive functioning and flexibility are seen following both chronic stress and modulation of endogenous cannabinoid (eCB) signaling. Here, we investigated whether alterations in eCB signaling might contribute to the cognitive impairments induced by chronic stress. Chronic stress impaired reversal learning and induced perseveratory behavior in the Morris water maze without significant effect on task acquisition. These cognitive impairments were reversed by exogenous cannabinoid administration, suggesting deficient eCB signaling underlies these phenomena. In line with this hypothesis, chronic stress downregulated CB1 receptor expression and significantly reduced the content of the endocannabinoid 2-arachidonylglycerol within the hippocampus. CB1 receptor density and 2-arachidonylglycerol content were unaffected in the limbic forebrain. These data suggest that stress-induced downregulation of hippocampal eCB signaling contributes to problems in behavioral flexibility and could play a role in the development of perseveratory and ruminatory behaviors in stress-related neuropsychiatric disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Endogenous cannabinoid signaling is essential for stress adaptation

Matthew N. Hill; Ryan J. McLaughlin; Brenda Bingham; Lalita Shrestha; Tiffany T.-Y. Lee; J. Megan Gray; Cecilia J. Hillard; Boris B. Gorzalka; Victor Viau

Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocannabinoid signaling responds to and regulates the activity of the hypothalamic–pituitary–adrenal (HPA) axis that governs the secretion of glucocorticoids; however, the role this system plays in adaptation of the neuroendocrine response to repeated stress is not well characterized. Herein, we demonstrate a divergent regulation of the two endocannabinoid ligands, N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), following repeated stress such that AEA content is persistently decreased throughout the corticolimbic stress circuit, whereas 2-AG is exclusively elevated within the amygdala in a stress-dependent manner. Pharmacological studies demonstrate that this divergent regulation of AEA and 2-AG contribute to distinct forms of HPA axis habituation. Inhibition of AEA hydrolysis prevented the development of basal hypersecretion of corticosterone following repeated stress. In contrast, systemic or intra-amygdalar administration of a CB1 receptor antagonist before the final stress exposure prevented the repeated stress-induced decline in corticosterone responses. The present findings demonstrate an important role for endocannabinoid signaling in the process of stress HPA habituation, and suggest that AEA and 2-AG modulate different components of the adrenocortical response to repeated stressor exposure.


Neuroscience & Biobehavioral Reviews | 2012

Neurobiology of chronic mild stress: Parallels to major depression

Matthew N. Hill; Kim G.C. Hellemans; Pamela Verma; Boris B. Gorzalka; Joanne Weinberg

The chronic mild (or unpredictable/variable) stress (CMS) model was developed as an animal model of depression more than 20 years ago. The foundation of this model was that following long-term exposure to a series of mild, but unpredictable stressors, animals would develop a state of impaired reward salience that was akin to the anhedonia observed in major depressive disorder. In the time since its inception, this model has also been used for a variety of studies examining neurobiological variables that are associated with depression, despite the fact that this model has never been critically examined to validate that the neurobiological changes induced by CMS are parallel to those documented in depressive disorder. The aim of the current review is to summarize the current state of knowledge regarding the effects of chronic mild stress on neurobiological variables, such as neurochemistry, neurochemical receptor expression and functionality, neurotrophin expression and cellular plasticity. These findings are then compared to those of clinical research examining common variables in populations with depressive disorders to determine if the changes observed following chronic mild stress are in fact consistent with those observed in major depression. We conclude that the chronic mild stress paradigm: (1) evokes an array of neurobiological changes that mirror those seen in depressive disorders and (2) may be a suitable tool to investigate novel systems that could be disturbed in depression, and thus aid in the development of novel targets for the treatment of depression.


Endocrinology | 2010

Fast Feedback Inhibition of the HPA Axis by Glucocorticoids Is Mediated by Endocannabinoid Signaling

Nathan K. Evanson; Jeffrey G. Tasker; Matthew N. Hill; Cecilia J. Hillard; James P. Herman

Glucocorticoid hormones are secreted in response to stimuli that activate the hypothalamo-pituitary-adrenocortical (HPA) axis and self-regulate through negative feedback. Negative feedback that occurs on a rapid time scale is thought to act through nongenomic mechanisms. In these studies, we investigated fast feedback inhibition of HPA axis stress responses by direct glucocorticoid action at the paraventricular nucleus of the hypothalamus (PVN). Local infusion of dexamethasone or a membrane-impermeant dexamethasone-BSA conjugate into the PVN rapidly inhibits restraint-induced ACTH and corticosterone release in a manner consistent with feedback actions at the cell membrane. The dexamethasone fast feedback response is blocked by the cannabinoid CB1 receptor antagonist AM-251, suggesting that fast feedback requires local release of endocannabinoids. Hypothalamic tissue content of the endocannabinoid 2-arachidonoyl glycerol is elevated by restraint stress, consistent with endocannabinoid action on feedback processes. These data support the hypothesis that glucocorticoid-induced fast feedback inhibition of the HPA axis is mediated by a nongenomic signaling mechanism that involves endocannabinoid signaling at the level of the PVN.


The Journal of Neuroscience | 2011

Recruitment of Prefrontal Cortical Endocannabinoid Signaling by Glucocorticoids Contributes to Termination of the Stress Response

Matthew N. Hill; Ryan J. McLaughlin; Bin Pan; Megan L. Fitzgerald; Christopher J. Roberts; Tiffany T.-Y. Lee; Ilia N. Karatsoreos; Ken Mackie; Victor Viau; Virginia M. Pickel; Bruce S. McEwen; Qing-song Liu; Boris B. Gorzalka; Cecilia J. Hillard

The mechanisms subserving the ability of glucocorticoid signaling within the medial prefrontal cortex (mPFC) to terminate stress-induced activation of the hypothalamic–pituitary–adrenal (HPA) axis are not well understood. We report that antagonism of the cannabinoid CB1 receptor locally within the mPFC prolonged corticosterone secretion following cessation of stress in rats. Mice lacking the CB1 receptor exhibited a similar prolonged response to stress. Exposure of rats to stress produced an elevation in the endocannabinoid 2-arachidonoylglycerol within the mPFC that was reversed by pretreatment with the glucocorticoid receptor antagonist RU-486 (20 mg/kg). Electron microscopic and electrophysiological data demonstrated the presence of CB1 receptors in inhibitory-type terminals impinging upon principal neurons within layer V of the prelimbic region of the mPFC. Bath application of corticosterone (100 nm) to prefrontal cortical slices suppressed GABA release onto principal neurons in layer V of the prelimbic region, when examined 1 h later, which was prevented by application of a CB1 receptor antagonist. Collectively, these data demonstrate that the ability of stress-induced glucocorticoid signaling within mPFC to terminate HPA axis activity is mediated by a local recruitment of endocannabinoid signaling. Endocannabinoid activation of CB1 receptors decreases GABA release within the mPFC, likely increasing the outflow of the principal neurons of the prelimbic region to contribute to termination of the stress response. These data support a model in which endocannabinoid signaling links glucocorticoid receptor engagement to activation of corticolimbic relays that inhibit corticosterone secretion.


Neuropsychopharmacology | 2009

Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis

Matthew N. Hill; Ryan J. McLaughlin; Anna C. Morrish; Victor Viau; Stan B. Floresco; Cecilia J. Hillard; Boris B. Gorzalka

Endocannabinoids inhibit hypothalamic–pituitary–adrenal (HPA) axis activity; however, the neural substrates and pathways subserving this effect are not well characterized. The amygdala is a forebrain structure that provides excitatory drive to the HPA axis under conditions of stress. The aim of this study was to determine the contribution of endocannabinoid signaling within distinct amygdalar nuclei to activation of the HPA axis in response to psychological stress. Exposure of rats to 30-min restraint stress increased the hydrolytic activity of fatty acid amide hydrolase (FAAH) and concurrently decreased content of the endocannabinoid/CB1 receptor ligand N-arachidonylethanolamine (anandamide; AEA) throughout the amygdala. In stressed rats, AEA content in the amygdala was inversely correlated with serum corticosterone concentrations. Pharmacological inhibition of FAAH activity within the basolateral amygdala complex (BLA) attenuated stress-induced corticosterone secretion; this effect was blocked by co-administration of the CB1 receptor antagonist AM251, suggesting that stress-induced decreases in CB1 receptor activation by AEA contribute to activation of the neuroendocrine stress response. Local administration into the BLA of a CB1 receptor agonist significantly reduced stress-induced corticosterone secretion, whereas administration of a CB1 receptor antagonist increased corticosterone secretion. Taken together, these findings suggest that the degree to which stressful stimuli reduce amygdalar AEA/CB1 receptor signaling contributes to the magnitude of the HPA response.


European Neuropsychopharmacology | 2005

Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test

Matthew N. Hill; Boris B. Gorzalka

These experiments aimed to assess whether enhanced activity at the cannabinoid CB1 receptor elicits antidepressant-like effects. To examine this we administered 1 and 5 mg/kg doses of the endocannabinoid uptake inhibitor AM404; 5 and 25 microg/kg doses of HU-210, a potent CB1 receptor agonist; 1, 2.5 and 5 mg/kg of oleamide, which elicits cannabinoidergic actions; 1 and 5 mg/kg doses of AM 251, a selective CB1 receptor antagonist, as well as 10 mg/kg desipramine (a positive antidepressant control) and measured the duration of immobility, during a 5-min test session of the rat Porsolt forced swim test. Results demonstrated that administration of desipramine reduced immobility duration by about 50% and that all of AM404, oleamide and HU-210 administration induced comparable decreases in immobility that were blocked by pretreatment with AM 251. Administration of the antagonist AM 251 alone had no effect on immobility at either dose. These data suggest that enhancement of CB1 receptor signaling results in antidepressant effects in the forced swim test similar to that seen following conventional antidepressant administration.


Neuroscience | 2012

Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis.

Matthew N. Hill; Jeffrey G. Tasker

The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signaling plays in phases of HPA axis regulation, and the neural sites of action mediating this regulation, were not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress, and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Overall, the current level of information indicates that endocannabinoid signaling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala, and hypothalamus.


British Journal of Pharmacology | 2010

Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models

Daniel Thomas Malone; Matthew N. Hill; Tiziana Rubino

Cannabis is one of the most widely used illicit drugs among adolescents, and most users first experiment with it in adolescence. Adolescence is a critical phase for brain development, characterized by neuronal maturation and rearrangement processes, such as myelination, synaptic pruning and dendritic plasticity. The endocannabinoid system plays an important role in fundamental brain developmental processes such as neuronal cell proliferation, migration and differentiation. Therefore changes in endocannabinoid activity during this specific developmental phase, induced by the psychoactive component of marijuana, Δ9‐tetrahydrocannabinol, might lead to subtle but lasting neurobiological changes that can affect brain functions and behaviour. In this review, we outline recent research into the endocannabinoid system focusing on the relationships between adolescent exposure to cannabinoids and increased risk for certain neuropsychiatric diseases such as schizophrenia, as highlighted by both human and animal studies. Particular emphasis will be given to the possible mechanisms by which adolescent cannabis consumption could render a person more susceptible to developing psychoses such as schizophrenia.

Collaboration


Dive into the Matthew N. Hill's collaboration.

Top Co-Authors

Avatar

Boris B. Gorzalka

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Cecilia J. Hillard

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiffany T.-Y. Lee

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ryan J. McLaughlin

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachin Patel

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge